Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 10(50): e0100921, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34913712

ABSTRACT

Here, we report the genome sequences of three bacterial isolates that were cultured from aerosol samples collected at altitudes of 18 to 29 km above sea level. The isolates tolerate desiccation and shortwave UV radiation and are members of the actinobacterial genera Curtobacterium and Modestobacter and the betaproteobacterial genus Noviherbaspirillum.

2.
Astrobiology ; 21(10): 1206-1223, 2021 10.
Article in English | MEDLINE | ID: mdl-32787733

ABSTRACT

We revisit the hypothesis that there is life in the venusian clouds to propose a life cycle that resolves the conundrum of how life can persist aloft for hundreds of millions to billions of years. Most discussions of an aerial biosphere in the venusian atmosphere temperate layers never address whether the life-small microbial-type particles-is free floating or confined to the liquid environment inside cloud droplets. We argue that life must reside inside liquid droplets such that it will be protected from a fatal net loss of liquid to the atmosphere, an unavoidable problem for any free-floating microbial life forms. However, the droplet habitat poses a lifetime limitation: Droplets inexorably grow (over a few months) to large enough sizes that are forced by gravity to settle downward to hotter, uninhabitable layers of the venusian atmosphere. (Droplet fragmentation-which would reduce particle size-does not occur in venusian atmosphere conditions.) We propose for the first time that the only way life can survive indefinitely is with a life cycle that involves microbial life drying out as liquid droplets evaporate during settling, with the small desiccated "spores" halting at, and partially populating, the venusian atmosphere stagnant lower haze layer (33-48 km altitude). We, thus, call the venusian lower haze layer a "depot" for desiccated microbial life. The spores eventually return to the cloud layer by upward diffusion caused by mixing induced by gravity waves, act as cloud condensation nuclei, and rehydrate for a continued life cycle. We also review the challenges for life in the extremely harsh conditions of the venusian atmosphere, refuting the notion that the "habitable" cloud layer has an analogy in any terrestrial environment.


Subject(s)
Atmosphere , Extraterrestrial Environment , Animals , Climate , Life Cycle Stages , Particle Size
3.
NPJ Microgravity ; 6: 24, 2020.
Article in English | MEDLINE | ID: mdl-32964110

ABSTRACT

Nanopore sequencing, as represented by Oxford Nanopore Technologies' MinION, is a promising technology for in situ life detection and for microbial monitoring including in support of human space exploration, due to its small size, low mass (~100 g) and low power (~1 W). Now ubiquitous on Earth and previously demonstrated on the International Space Station (ISS), nanopore sequencing involves translocation of DNA through a biological nanopore on timescales of milliseconds per base. Nanopore sequencing is now being done in both controlled lab settings as well as in diverse environments that include ground, air, and space vehicles. Future space missions may also utilize nanopore sequencing in reduced gravity environments, such as in the search for life on Mars (Earth-relative gravito-inertial acceleration (GIA) g = 0.378), or at icy moons such as Europa (g = 0.134) or Enceladus (g = 0.012). We confirm the ability to sequence at Mars as well as near Europa or Lunar (g = 0.166) and lower g levels, demonstrate the functionality of updated chemistry and sequencing protocols under parabolic flight, and reveal consistent performance across g level, during dynamic accelerations, and despite vibrations with significant power at translocation-relevant frequencies. Our work strengthens the use case for nanopore sequencing in dynamic environments on Earth and in space, including as part of the search for nucleic-acid based life beyond Earth.

4.
Front Microbiol ; 11: 515319, 2020.
Article in English | MEDLINE | ID: mdl-33505359

ABSTRACT

Enterococcus faecalis is a multidrug resistant, opportunistic human pathogen and a leading cause of hospital acquired infections. Recently, isolates have been recovered from the air and surfaces onboard the International Space Station (ISS). Pangenomic and functional analyses were carried out to assess their potential impact on astronaut health. Genomes of each ISS isolate, and both clinical and commensal reference strains, were evaluated for their core and unique gene content, acquired antibiotic resistance genes, phage, plasmid content, and virulence traits. In order to determine their potential survival when outside of the human host, isolates were also challenged with three weeks of desiccation at 30% relative humidity. Finally, pathogenicity of the ISS strains was evaluated in the model organism Caenorhabditis elegans. At the culmination of this study, there were no defining signatures that separated known pathogenic strains from the more commensal phenotypes using the currently available resources. As a result, the current reliance on database information alone must be shifted to experimentally evaluated genotypic and phenotypic characteristics of clinically relevant microorganisms.

5.
Microorganisms ; 8(1)2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31881682

ABSTRACT

The study of the forces which govern the geographical distributions of life is known as biogeography, a subject which has fascinated zoologists, botanists and ecologists for centuries. Advances in our understanding of community ecology and biogeography-supported by rapid improvements in next generation sequencing technology-have now made it possible to identify and explain where and why life exists as it does, including within the microbial world. In this review, we highlight how a unified model of microbial biogeography, one which incorporates the classic ecological principles of selection, diversification, dispersion and ecological drift, can be used to explain community dynamics in the settings of both health and disease. These concepts operate on a multiplicity of temporal and spatial scales, and together form a powerful lens through which to study microbial population structures even at the finest anatomical resolutions. When applied specifically to curious strains of conjunctivitis-causing, nonencapsulated Streptococcus pneumoniae, we show how this conceptual framework can be used to explain the possible evolutionary and disease-causing mechanisms which allowed these lineages to colonize and invade a separate biogeography. An intimate knowledge of this radical bifurcation in phylogeny, still the only known niche subspecialization for S. pneumoniae to date, is critical to understanding the pathogenesis of ocular surface infections, nature of host-pathogen interactions, and developing strategies to curb disease transmission.

6.
NPJ Microgravity ; 4: 14, 2018.
Article in English | MEDLINE | ID: mdl-30109261

ABSTRACT

Parabolic flights provide cost-effective, time-limited access to "weightless" or reduced gravity conditions, facilitating research and validation activities that complement infrequent and costly access to space. Although parabolic flights have been conducted for decades, reference acceleration profiles and processing methods are not widely available. Here we present a solution for collecting, analyzing, and classifying the altered gravity environments experienced during parabolic flights, which we validated during a Boeing 727-200F flight with 20 parabolas. All data and analysis code are freely available. Our solution can be integrated with diverse experimental designs, does not depend upon accelerometer orientation, and allows unsupervised classification of all phases of flight, providing a consistent and open-source approach to quantifying gravito-inertial accelerations (GIA), or g levels. As academic, governmental, and commercial use of space advances, data availability and validated processing methods will enable better planning, execution, and analysis of parabolic flight experiments, and thus facilitate future space activities.

SELECTION OF CITATIONS
SEARCH DETAIL
...