Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 27(12): 2856-2866, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33644947

ABSTRACT

Mangroves have among the highest carbon densities of any tropical forest. These 'blue carbon' ecosystems can store large amounts of carbon for long periods, and their protection reduces greenhouse gas emissions and supports climate change mitigation. Incorporating mangroves into Nationally Determined Contributions to the Paris Agreement and their valuation on carbon markets requires predicting how the management of different land-uses can prevent future greenhouse gas emissions and increase CO2 sequestration. We integrated comprehensive global datasets for carbon stocks, mangrove distribution, deforestation rates, and land-use change drivers into a predictive model of mangrove carbon emissions. We project emissions and foregone soil carbon sequestration potential under 'business as usual' rates of mangrove loss. Emissions from mangrove loss could reach 2391 Tg CO2 eq by the end of the century, or 3392 Tg CO2 eq when considering foregone soil carbon sequestration. The highest emissions were predicted in southeast and south Asia (West Coral Triangle, Sunda Shelf, and the Bay of Bengal) due to conversion to aquaculture or agriculture, followed by the Caribbean (Tropical Northwest Atlantic) due to clearing and erosion, and the Andaman coast (West Myanmar) and north Brazil due to erosion. Together, these six regions accounted for 90% of the total potential CO2 eq future emissions. Mangrove loss has been slowing, and global emissions could be more than halved if reduced loss rates remain in the future. Notably, the location of global emission hotspots was consistent with every dataset used to calculate deforestation rates or with alternative assumptions about carbon storage and emissions. Our results indicate the regions in need of policy actions to address emissions arising from mangrove loss and the drivers that could be managed to prevent them.


Subject(s)
Carbon , Wetlands , Asia , Brazil , Carbon Sequestration , Caribbean Region , Ecosystem , Paris
2.
Sci Rep ; 10(1): 7117, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32346000

ABSTRACT

Fragmentation is a major driver of ecosystem degradation, reducing the capacity of habitats to provide many important ecosystem services. Mangrove ecosystem services, such as erosion prevention, shoreline protection and mitigation of climate change (through carbon sequestration), depend on the size and arrangement of forest patches, but we know little about broad-scale patterns of mangrove forest fragmentation. Here we conduct a multi-scale analysis using global estimates of mangrove density and regional drivers of mangrove deforestation to map relationships between habitat loss and fragmentation. Mangrove fragmentation was ubiquitous; however, there are geographic disparities between mangrove loss and fragmentation; some regions, like Cambodia and the southern Caribbean, had relatively little loss, but their forests have been extensively fragmented. In Southeast Asia, a global hotspot of mangrove loss, the conversion of forests to aquaculture and rice plantations were the biggest drivers of loss (>50%) and fragmentation. Surprisingly, conversion of forests to oil palm plantations, responsible for >15% of all deforestation in Southeast Asia, was only weakly correlated with mangrove fragmentation. Thus, the management of different deforestation drivers may increase or decrease fragmentation. Our findings suggest that large scale monitoring of mangrove forests should also consider fragmentation. This work highlights that regional priorities for conservation based on forest loss rates can overlook fragmentation and associated loss of ecosystem functionality.

SELECTION OF CITATIONS
SEARCH DETAIL
...