Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol Lett ; 10(6): 520-527, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37333938

ABSTRACT

Delhi, India, suffers from periods of very poor air quality, but little is known about the chemical production of secondary pollutants in this highly polluted environment. During the postmonsoon period in 2018, extremely high nighttime concentrations of NOx (NO and NO2) and volatile organic compounds (VOCs) were observed, with median NOx mixing ratios of ∼200 ppbV (maximum of ∼700 ppbV). A detailed chemical box model constrained to a comprehensive suite of speciated VOC and NOx measurements revealed very low nighttime concentrations of oxidants, NO3, O3, and OH, driven by high nighttime NO concentrations. This results in an atypical NO3 diel profile, not previously reported in other highly polluted urban environments, significantly perturbing nighttime radical oxidation chemistry. Low concentrations of oxidants and high nocturnal primary emissions coupled with a shallow boundary layer led to enhanced early morning photo-oxidation chemistry. This results in a temporal shift in peak O3 concentrations when compared to the premonsoon period (12:00 and 15:00 local time, respectively). This shift will likely have important implications on local air quality, and effective urban air quality management should consider the impacts of nighttime emission sources during the postmonsoon period.

2.
Environ Sci Technol ; 55(11): 7365-7375, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34006107

ABSTRACT

The life-critical matrices of air and water are among the most complex chemical mixtures that are ever encountered. Ultrahigh-resolution mass spectrometers, such as the Orbitrap, provide unprecedented analytical capabilities to probe the molecular composition of such matrices, but the extraction of non-targeted chemical information is impractical to perform via manual data processing. Automated non-targeted tools rapidly extract the chemical information of all detected compounds within a sample dataset. However, these methods have not been exploited in the environmental sciences. Here, we provide an automated and (for the first time) rigorously tested methodology for the non-targeted compositional analysis of environmental matrices using coupled liquid chromatography-mass spectrometric data. First, the robustness and reproducibility was tested using authentic standards, evaluating performance as a function of concentration, ionization potential, and sample complexity. The method was then used for the compositional analysis of particulate matter and surface waters collected from worldwide locations. The method detected >9600 compounds in the individual environmental samples, arising from critical pollutant sources, including carcinogenic industrial chemicals, pesticides, and pharmaceuticals among others. This methodology offers considerable advances in the environmental sciences, providing a more complete assessment of sample compositions while significantly increasing throughput.


Subject(s)
Pesticides , Water Pollutants, Chemical , Chromatography, High Pressure Liquid , Chromatography, Liquid , Mass Spectrometry , Pesticides/analysis , Reproducibility of Results , Water Pollutants, Chemical/analysis
3.
Environ Sci Technol ; 55(2): 842-853, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33410677

ABSTRACT

The formation of isoprene nitrates (IsN) can lead to significant secondary organic aerosol (SOA) production and they can act as reservoirs of atmospheric nitrogen oxides. In this work, we estimate the rate of production of IsN from the reactions of isoprene with OH and NO3 radicals during the summertime in Beijing. While OH dominates the loss of isoprene during the day, NO3 plays an increasingly important role in the production of IsN from the early afternoon onwards. Unusually low NO concentrations during the afternoon resulted in NO3 mixing ratios of ca. 2 pptv at approximately 15:00, which we estimate to account for around a third of the total IsN production in the gas phase. Heterogeneous uptake of IsN produces nitrooxyorganosulfates (NOS). Two mono-nitrated NOS were correlated with particulate sulfate concentrations and appear to be formed from sequential NO3 and OH oxidation. Di- and tri-nitrated isoprene-related NOS, formed from multiple NO3 oxidation steps, peaked during the night. This work highlights that NO3 chemistry can play a key role in driving biogenic-anthropogenic interactive chemistry in Beijing with respect to the formation of IsN during both the day and night.


Subject(s)
Hemiterpenes , Nitrates , Aerosols/analysis , Beijing , Butadienes/analysis , Hemiterpenes/analysis , Nitrates/analysis
4.
Faraday Discuss ; 226: 382-408, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33475668

ABSTRACT

Organic aerosols, a major constituent of fine particulate mass in megacities, can be directly emitted or formed from secondary processing of biogenic and anthropogenic volatile organic compound emissions. The complexity of volatile organic compound emission sources, speciation and oxidation pathways leads to uncertainties in the key sources and chemistry leading to formation of organic aerosol in urban areas. Historically, online measurements of organic aerosol composition have been unable to resolve specific markers of volatile organic compound oxidation, while offline analysis of markers focus on a small proportion of organic aerosol and lack the time resolution to carry out detailed statistical analysis required to study the dynamic changes in aerosol sources and chemistry. Here we use data collected as part of the joint UK-China Air Pollution and Human Health (APHH-Beijing) collaboration during a field campaign in urban Beijing in the summer of 2017 alongside laboratory measurements of secondary organic aerosol from oxidation of key aromatic precursors (1,3,5-trimethyl benzene, 1,2,4-trimethyl benzene, propyl benzene, isopropyl benzene and 1-methyl naphthalene) to study the anthropogenic and biogenic contributions to organic aerosol. For the first time in Beijing, this study applies positive matrix factorisation to online measurements of organic aerosol composition from a time-of-flight iodide chemical ionisation mass spectrometer fitted with a filter inlet for gases and aerosols (FIGAERO-ToF-I-CIMS). This approach identifies the real-time variations in sources and oxidation processes influencing aerosol composition at a near-molecular level. We identify eight factors with distinct temporal variability, highlighting episodic differences in OA composition attributed to regional influences and in situ formation. These have average carbon numbers ranging from C5-C9 and can be associated with oxidation of anthropogenic aromatic hydrocarbons alongside biogenic emissions of isoprene, α-pinene and sesquiterpenes.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Beijing , Humans , Mass Spectrometry , Particulate Matter/analysis
5.
Addict Behav Rep ; 12: 100293, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33364302

ABSTRACT

BACKGROUND: Adverse childhood experiences (ACEs) and substance use disorders (SUDs) are highly prevalent public health challenges that have been shown to be strongly correlated. Although previous research has suggested a dose-response relationship between ACEs and SUDs, less is known about this phenomenon and the prevalence of ACEs in lower income, racially/ethnically diverse populations. This study sought to examine these relationships in a population treated at a multi-site safety net provider. METHODS: The ACEs survey was delivered as a standard assessment to all behavioral health patients seen at a large Federally Qualified Health Center (FQHC) in Connecticut. 4378 patients completed the questionnaire. Both total score and individual ACE questions were correlated with diagnostic history, according to chi-square and multiple-group structural equation modeling tests. RESULTS: 84.8% of patients reported at least one ACE and 49.1% had an ACE score ≥ 4. Experiencing 1 or more ACEs predicted having any SUD, after controlling for race/ethnicity and gender. Parent substance use, physical abuse, and sexual abuse in particular were the strongest predictors of developing any SUD. Men and non-white individuals were more likely to develop an SUD with lower ACE scores than women and white individuals. CONCLUSIONS: While ACEs predict an increased likelihood of developing any SUD, the nature of this relationship differs by both gender and race/ethnicity. In this FQHC patient population there is no obvious dose-response relationship between ACEs and SUDs. Additional research is required to help understand why the relationship between ACEs and SUDs observed here differs from other populations.

6.
Psychol Trauma ; 12(S1): S193-S194, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32551773

ABSTRACT

Adverse childhood experiences, which is defined by different forms of abuse, neglect, and household dysfunction occurring before the age of 18 years, is a major public health problem in the United States that has the potential to worsen in the current COVID-19 pandemic. Moreover, the challenge is even greater for children and youth from low-income communities and communities of color. Thus, there is a greater need for investments in youth-serving systems within and beyond health care and public health to effectively address adverse childhood experiences and prevent its short- and long-term negative health and social sequelae well beyond the current public health crisis. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Subject(s)
Adverse Childhood Experiences , Child Abuse , Coronavirus Infections , Pandemics , Pneumonia, Viral , Psychological Trauma , COVID-19 , Child , Exposure to Violence , Humans , Psychological Trauma/diagnosis , Psychological Trauma/etiology , Psychological Trauma/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...