Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Affect Disord Rep ; 13: 100606, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37304226

ABSTRACT

Background: Fibroblast growth factor-2 (FGF2) is a biomarker that is associated with depression, anxiety and stress in rodents. In humans, we have previously demonstrated that salivary FGF2 increased following stress in a similar pattern to cortisol, and FGF2 (but not cortisol) reactivity predicted repetitive negative thinking, a transdiagnostic risk factor for mental illness. The current study assessed the relationship between FGF2, cortisol, and mental health before and during the COVID-19 pandemic. Methods: We employed a longitudinal correlational design using a convenience sample. We assessed whether FGF2 and cortisol reactivity following the Trier Social Stress Task (TSST) were associated with DASS-21 depression, anxiety and stress, measured at the time of the TSST in 2019-20 (n = 87; time 1), and then again in May 2020 during the first wave of COVID-19 in Sydney (n = 34 of the original sample; time 2). Results: FGF2 reactivity (but not absolute FGF2 levels) at time 1 predicted depression, anxiety, and stress across timepoints. Cortisol reactivity at time 1 was associated with stress over timepoints, and absolute cortisol levels were associated with depression across timepoints. Limitations: The sample was comprised of mostly healthy participants from a student population, and there was high attrition between timepoints. The outcomes need to be replicated in larger, more diverse, samples. Conclusions: FGF2 and cortisol may be uniquely predictive of mental health outcomes in healthy samples, potentially allowing for early identification of at-risk individuals.

2.
Chronic Stress (Thousand Oaks) ; 6: 24705470221114787, 2022.
Article in English | MEDLINE | ID: mdl-35874911

ABSTRACT

Background: Fibroblast Growth Factor 2 (FGF2) is a neurotrophic protein that has been implicated as a biomarker for anxiety and depressive disorders, which comprise a significant component of the global burden of disease. Research using rodents has indicated that FGF2 is part of the stress response, but whether this translates to humans has yet to be investigated. In this study, we aimed to explore the potential role of FGF2 in the human stress response by examining its association with physiological and psychological processes during and following the Trier Social Stress Test (TSST). Methods: Participants in the active stress experiment (N = 87) underwent the TSST, provided saliva samples to obtain levels of cortisol and FGF2, and reported on post-event rumination related to the TSST task over the following week. Participants in the no-stress experiment (N = 25) provided saliva samples for measurement of FGF2 and cortisol across a corresponding time period. Results: Salivary FGF2 levels changed after the TSST and were associated with the pattern of change in salivary cortisol. Cortisol responses in the active stress condition were blunted in females (relative to males), however, sex did not interact with any other effect. FGF2 reactivity (ie, the magnitude of change over time) was not correlated with cortisol reactivity. Lower FGF2 reactivity following the TSST, but not overall FGF2 levels, or cortisol, was associated with higher fear of negative evaluation, repetitive negative thinking and post-event processing, as well as repetitive negative thinking in the week following the TSST. Participants in the no-stress experiment showed a decrease in cortisol, yet no change in their FGF2 levels. Conclusion: These findings suggest that FGF2 is involved in the human stress response and higher levels of FGF2 reactivity may be associated with protective cognitive processes following stress exposure.

SELECTION OF CITATIONS
SEARCH DETAIL
...