Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Br J Anaesth ; 117(4): 531-532, 2016 Oct.
Article in English | MEDLINE | ID: mdl-28077546
2.
Phys Med Biol ; 59(13): 3319-35, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24874577

ABSTRACT

As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in (1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and (2) water in which 3, 5, 10 and 100% of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency versus time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium.


Subject(s)
Cell Separation/instrumentation , Magnetic Phenomena , Models, Biological , Needles , Microspheres , Nanoparticles/chemistry , Polystyrenes/chemistry , Time Factors
3.
Cell Transplant ; 22(10): 1943-54, 2013.
Article in English | MEDLINE | ID: mdl-23069078

ABSTRACT

Organ transplantation is a life-saving procedure and the preferred method of treatment for a growing number of disease states. The advent of new immunosuppressants and improved care has led to great advances in both patient and graft survival. However, acute T-cell-mediated graft rejection occurs in a significant quantity of recipients and remains a life-threatening condition. Acute rejection is associated with decrease in long-term graft survival, demonstrating a need to carefully monitor transplant patients. Current diagnostic criteria for transplant rejection rely on invasive tissue biopsies or relatively nonspecific clinical features. A noninvasive way is needed to detect, localize, and monitor transplant rejection. Capitalizing on advances in targeted contrast agents and magnetic-based detection technology, we developed anti-CD3 antibody-tagged nanoparticles. T cells were found to bind preferentially to antibody-tagged nanoparticles, as identified through light microscopy, transmission electron microscopy, and confocal microscopy. Using mouse skin graft models, we were also able to demonstrate in vivo vascular delivery of T-cell targeted nanoparticles. We conclude that targeting lymphocytes with magnetic nanoparticles is conducive to developing a novel, noninvasive strategy for identifying transplant rejection.


Subject(s)
Antibodies/chemistry , Graft Rejection/diagnosis , Magnetite Nanoparticles/chemistry , Animals , Antibodies/immunology , CD3 Complex/immunology , Graft Rejection/immunology , Humans , Immunohistochemistry , Jurkat Cells , Magnetometry , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Electron, Transmission , Skin/pathology , Skin Transplantation , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
4.
J Magn Magn Mater ; 323(6): 767-774, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21516188

ABSTRACT

We use dynamic susceptometry measurements to extract semiempirical temperature-dependent, 255 to 400 K, magnetic parameters that determine the behavior of single-core nanoparticles useful for SQUID relaxometry in biomedical applications. Volume susceptibility measurements were made in 5K degree steps at nine frequencies in the 0.1 - 1000 Hz range, with a 0.2 mT amplitude probe field. The saturation magnetization (M(s)) and anisotropy energy density (K) derived from the fitting of theoretical susceptibility to the measurements both increase with decreasing temperature; good agreement between the parameter values derived separately from the real and imaginary components is obtained. Characterization of the Néel relaxation time indicates that the conventional prefactor, 0.1 ns, is an upper limit, strongly correlated with the anisotropy energy density. This prefactor decreases substantially for lower temperatures, as K increases. We find, using the values of the parameters determined from the real part of the susceptibility measurements at 300 K, that SQUID relaxometry measurements of relaxation and excitation curves on the same sample are well described.

5.
J Magn Magn Mater ; 311(1): 429-435, 2007 Apr.
Article in English | MEDLINE | ID: mdl-18084633

ABSTRACT

Acute rejection in organ transplant is signaled by the proliferation of T-cells that target and kill the donor cells requiring painful biopsies to detect rejection onset. An alternative non-invasive technique is proposed using a multi-channel superconducting quantum interference device (SQUID) magnetometer to detect T-cell lymphocytes in the transplanted organ labeled with magnetic nanoparticles conjugated to antibodies specifically attached to lymphocytic ligand receptors. After a magnetic field pulse, the T-cells produce a decaying magnetic signal with a characteristic time of the order of a second. The extreme sensitivity of this technique, 10(5) cells, can provide early warning of impending transplant rejection and monitor immune-suppressive chemotherapy.

6.
Phys Med Biol ; 52(14): 4009-25, 2007 Jul 21.
Article in English | MEDLINE | ID: mdl-17664592

ABSTRACT

Superparamagnetic nanoparticles can be attached in great numbers to pathogenic cells using specific antibodies so that the magnetically-labeled cells themselves become superparamagnets. The cells can then be manipulated and drawn out of biological fluids, as in a biopsy, very selectively using a magnetic needle. We examine the origins and uncertainties in the forces exerted on magnetic nanoparticles by static magnetic fields, leading to a model for trajectories and collection times of dilute superparamagnetic cells in biological fluids. We discuss the design and application of such magnetic needles and the theory of collection times. We compare the mathematical model to measurements in a variety of media including blood. For more information on this article, see medicalphysicsweb.org.


Subject(s)
Cell Separation/methods , Immunomagnetic Separation/methods , Magnetics , Micromanipulation/methods , Models, Biological , Nanostructures/chemistry , Needles , Computer Simulation , Nanostructures/radiation effects
7.
Phys Med Biol ; 50(6): 1273-93, 2005 Mar 21.
Article in English | MEDLINE | ID: mdl-15798322

ABSTRACT

An array of highly sensitive biomagnetic sensors of the superconducting quantum interference detector (SQUID) type can identify disease in vivo by detecting and imaging microscopic amounts of nanoparticles. We describe in detail procedures and parameters necessary for implementation of in vivo detection through the use of antibody-labelled magnetic nanoparticles as well as methods of determining magnetic nanoparticle properties. We discuss the weak field magnetic sensor SQUID system, the method of generating the magnetic polarization pulse to align the magnetic moments of the nanoparticles, and the measurement techniques to measure their magnetic remanence fields following this pulsed field. We compare these results to theoretical calculations and predict optimal properties of nanoparticles for in vivo detection.


Subject(s)
Leukemia/diagnosis , Magnetics/instrumentation , Models, Biological , Molecular Probe Techniques/instrumentation , Animals , Computer Simulation , Equipment Design , Equipment Failure Analysis , Humans , Nanotubes/analysis
8.
Brain Topogr ; 16(1): 39-55, 2003.
Article in English | MEDLINE | ID: mdl-14587968

ABSTRACT

A mathematical model (sigma(omega) approximately equal to A omega alpha, where, sigma is identical with conductivity, omega = 2 pi f is identical with applied frequency (Hz), A (amplitude) and alpha (unit less) is identical with search parameters) was used to fit the frequency dependence of electrical conductivities of compact, spongiosum, and bulk layers of the live and, subsequently, dead human skull samples. The results indicate that the fit of this model to the experimental data is excellent. The ranges of values of A and alpha were, spongiform (12.0-36.5, 0.0083-0.0549), the top compact (5.02-7.76, -0.137-0.0144), the lower compact (2.31-10.6, 0.0267-0.0452), and the bulk (7.46-10.6, 0.0133-0.0239). The respective values A and alpha for the respective layers of the dead skull samples were (40.1-89.7, -0.0017-0.0287), (5.53-14.5, -0.0296 - -0.0061), (4.58-15.9, -0.0226-0.0268), and (12.7-25.3, -0.0158-0.0132).


Subject(s)
Electric Conductivity , Models, Biological , Skull/physiology , Algorithms , Analysis of Variance , Computer Simulation , Electric Impedance , Electrodes , Electroencephalography/methods , Gelatin Sponge, Absorbable , Humans , In Vitro Techniques , Magnetoencephalography/methods
9.
Brain Topogr ; 14(3): 151-67, 2002.
Article in English | MEDLINE | ID: mdl-12002346

ABSTRACT

Electrical conductivities of compact, spongiosum, and bulk layers of the live human skull were determined at varying frequencies and electric fields at room temperature using the four-electrode method. Current, at higher densities that occur in human cranium, was applied and withdrawn over the top and bottom surfaces of each sample and potential drop across different layers was measured. We used a model that considers variations in skull thicknesses to determine the conductivity of the tri-layer skull and its individual anatomical structures. The results indicate that the conductivities of the spongiform (16.2-41.1 milliS/m), the top compact (5.4-7.2 milliS/m) and lower compact (2.8-10.2 milliS/m) layers of the skull have significantly different and inhomogeneous conductivities. The conductivities of the skull layers are frequency dependent in the 10-90 Hz region and are non-ohmic in the 0.45-2.07 A/m2 region. These current densities are much higher than those occurring in human brain.


Subject(s)
Electric Conductivity , Skull , Adolescent , Aged , Female , Humans , Male , Middle Aged , Models, Theoretical , Skull/physiology , X-Rays
10.
Brain Topogr ; 13(1): 29-42, 2000.
Article in English | MEDLINE | ID: mdl-11073092

ABSTRACT

In this study, electrical conductivities of compact, spongiosum, and bulk layers of cadaver skull were determined at varying electric fields at room temperature. Current was applied and withdrawn over the top and bottom surfaces of each sample and potential drop across different layers was measured using the four-electrode method. We developed a model, which considers of variations in skull thicknesses, to determine the conductivity of the tri-layer skull and its individual anatomical structures. The results indicate that the spongiform and the two compact layers of the skull have significantly different and inhomogeneous conductivities ranging from 0.76 +/- .14 to 11.5 +/- 1.8 milliS/m.


Subject(s)
Electric Conductivity , Skull/physiology , Electric Stimulation/methods , Electroencephalography , Humans , Magnetoencephalography
11.
Appl Opt ; 7(5): 883-90, 1968 May 01.
Article in English | MEDLINE | ID: mdl-20068703

ABSTRACT

The rate at which a motionless droplet evaporates can be measured continuously and precisely by determining the period of the intensity fluctuation of laser light reflected off the center of the droplet. The back scattered light is the coherent sum of light reflected from the external and the internal surfaces of the droplet; under typical conditions the back scattered light intensity oscillates at about 2 Hz or 3 Hz. This method is applied to pure water droplets in the diameter range from 0.6 mm to 1.8 mm, supported by bead thermistors and beaded glass fibers, and the results are compared with the quasi-stationary theory of Maxwell. Our measurements show that, after steady state is reached, the rate of change of diameter is inversely proportional to the diameter, as predicted in the quasi-stationary theory. Our experiments give a somewhat slower evaporation rate than the theory predicts; this discrepancy can be eliminated if one assumes that the surface temperature of the droplet is somewhat lower than measured with the bead thermistor. Using the optical method, mechanical resonances of the droplet can be sensitively detected; acoustically induced shape resonances are briefly investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...