Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(8): 4589-4600, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36795004

ABSTRACT

Metal-organic frameworks (MOFs) that display photoredox activity are attractive materials for sustainable photocatalysis. The ability to tune both their pore sizes and electronic structures based solely on the choice of the building blocks makes them amenable for systematic studies based on physical organic and reticular chemistry principles with high degrees of synthetic control. Here, we present a library of eleven isoreticular and multivariate (MTV) photoredox-active MOFs, UCFMOF-n, and UCFMTV-n-x% with a formula Ti6O9[links]3, where the links are linear oligo-p-arylene dicarboxylates with n number of p-arylene rings and x mol% of multivariate links containing electron-donating groups (EDGs). The average and local structures of UCFMOFs were elucidated from advanced powder X-ray diffraction (XRD) and total scattering tools, consisting of parallel arrangements of one-dimensional (1D) [Ti6O9(CO2)6]∞ nanowires connected through the oligo-arylene links with the topology of the edge-2-transitive rod-packed hex net. Preparation of an MTV library of UCFMOFs with varying link sizes and amine EDG functionalization enabled us to study both their steric (pore size) and electronic (highest occupied molecular orbital-lowest unoccupied molecular orbital, HOMO-LUMO, gap) effects on the substrate adsorption and photoredox transformation of benzyl alcohol. The observed relationship between the substrate uptake and reaction kinetics with the molecular traits of the links indicates that longer links, as well as increased EDG functionalization, exhibit impressive photocatalytic rates, outperforming MIL-125 by almost 20-fold. Our studies relating photocatalytic activity with pore size and electronic functionalization demonstrate how these are important parameters to consider when designing new MOF photocatalysts.

2.
Chem Sci ; 11(42): 11579-11583, 2020 Sep 24.
Article in English | MEDLINE | ID: mdl-34094404

ABSTRACT

Amphidynamic motion in metal-organic frameworks (MOFs) is an intriguing emergent property, characterized by high rotational motion of the phenylene rings that are embedded within an open, rigid framework. Here, we show how the phenylene rings in the organic linkers of the water stable MOF PEPEP-PIZOF-2 exhibit multiple rotational rates as a result of the electronic structure of the linker, with and without the presence of highly interacting molecular guests. By selective 2H enrichment, we prepared isotopologues PIZOF-2d4 and PIZOF-2d8 and utilized solid-state 13C and 2H NMR to differentiate the dynamic behavior of specific phenylenes in the linker at room temperature. A difference of at least one order of magnitude was observed between the rates of rotation of the central and outer rings at room temperature, with the central phenylene ring, surrounded by ethynyl groups, undergoing ultrafast 180° jumps with frequencies higher than 10 MHz. Moreover, loading tetracyanoquinodimethane (TCNQ) within the pores produced significant changes in the MOF's electronic structure, but very small changes were observed in the rotational rates, providing an unprecedented insight into the effects that internal dynamics have on guest diffusion. These findings would help elucidate the in-pore guest dynamics that affect transport phenomena in these highly used MOFs.

SELECTION OF CITATIONS
SEARCH DETAIL
...