Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Res ; 16(4): 728-739, 2018 04.
Article in English | MEDLINE | ID: mdl-29330286

ABSTRACT

G-protein-coupled receptor (GPCR) heterodimerization has emerged as a means by which alternative signaling entities can be created; yet, how receptor heterodimers affect receptor pharmacology remains unknown. Previous observations suggested a biochemical antagonism between GPCRs, CXCR4 and CB2 (CNR2), where agonist-bound CXCR4 and agonist-bound CB2 formed a physiologically nonfunctional heterodimer on the membrane of cancer cells, inhibiting their metastatic potential in vitro However, the reduced signaling entities responsible for the observed functional outputs remain elusive. This study now delineates the signaling mechanism whereby heterodimeric association between CXCR4 and CB2, induced by simultaneous agonist treatment, results in decreased CXCR4-mediated cell migration, invasion, and adhesion through inhibition of the Gα13/RhoA signaling axis. Activation of CXCR4 by its cognate ligand, CXCL12, stimulates Gα13 (GNA13), and subsequently, the small GTPase RhoA, which is required for directional cell migration and the metastatic potential of cancer cells. These studies in prostate cancer cells demonstrate decreased protein expression levels of Gα13 and RhoA upon simultaneous CXCR4/CB2 agonist stimulation. Furthermore, the agonist-induced heterodimer abrogated RhoA-mediated cytoskeletal rearrangement resulting in the attenuation of cell migration and invasion of an endothelial cell barrier. Finally, a reduction was observed in the expression of integrin α5 (ITGA5) upon heterodimerization, supported by decreased cell adhesion to extracellular matrices in vitro Taken together, the data identify a novel pharmacologic mechanism for the modulation of tumor cell migration and invasion in the context of metastatic disease.Implications: This study investigates a signaling mechanism by which GPCR heterodimerization inhibits cancer cell migration. Mol Cancer Res; 16(4); 728-39. ©2018 AACR.


Subject(s)
Chemokine CXCL12/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Heterocyclic Compounds/pharmacology , Neoplasms/metabolism , rhoA GTP-Binding Protein/metabolism , Benzylamines , Cannabinoids/pharmacology , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cyclams , Down-Regulation , Female , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Male , PC-3 Cells , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/metabolism , Receptors, CXCR4/agonists , Receptors, CXCR4/metabolism
2.
Cancer Microenviron ; 2013 Sep 28.
Article in English | MEDLINE | ID: mdl-24078461

ABSTRACT

Reactive oxygen species (ROS) are implicated in many human diseases, including cancer. We have previously demonstrated that ROS increased the expression and activity of the chemokine receptor, CXCR4, which enhanced metastatic functions in prostate cancer cells. Studies have also revealed that CXCR4 and its ligand, SDF-1α, promoted ROS accumulation; however the source of ROS was not investigated. Recent evidence suggested that ROS accumulation in prostate cancer cell lines was contributed by the NADPH oxidase (NOX) family of enzymes. Herein, we sought to determine whether the CXCR4/SDF-1α signaling axis mediates ROS production through NOX in prostate cancer. We observed an increase in intracellular ROS generation in prostate cancer cells upon SDF-1α stimulation compared to untreated samples. Conversely, lower levels of ROS were detected in cells treated with AMD3100 (CXCR4 antagonist) or the ROS scavenger, N-acetyl-cysteine (NAC). Markedly reduced levels of ROS were observed in cells treated with apocynin (NOX inhibitor) compared to rotenone (mitochondrial complex I inhibitor)-treated cells. Specifically, we determined that NOX2 responded to, and was regulated by, the SDF-1α/CXCR4 signaling axis. Moreover, chemical inhibition of the ERK1/2 and PI3K pathways revealed that PI3K/AKT signaling participated in CXCR4-mediated NOX activity, and that these collective signaling events resulted in enhanced cell movement towards a chemoattractant. Finally, NOX2 may be a potential therapeutic target, as Oncomine microarray database analysis of normal prostate, benign prostatic hyperplasia (BPH) and prostatic intraepithelial neoplasia (PIN) tissue samples determined a correlation between NOX2 expression and prostate cancer. Taken together, these results suggest that CXCR4/SDF-1α-mediated ROS production through NOX2 enzymes may be an emerging concept by which chemokine signaling progresses tumorigenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...