Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(3): 035002, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37012772

ABSTRACT

We have developed an atomic magnetometer based on the rubidium isotope 87Rb and a microfabricated silicon/glass vapor cell for the purpose of qualifying the instrument for space flight during a ride-along opportunity on a sounding rocket. The instrument consists of two scalar magnetic field sensors mounted at 45° angle to avoid measurement dead zones, and the electronics consist of a low-voltage power supply, an analog interface, and a digital controller. The instrument was launched into the Earth's northern cusp from Andøya, Norway on December 8, 2018 on the low-flying rocket of the dual-rocket Twin Rockets to Investigate Cusp Electrodynamics 2 mission. The magnetometer was operated without interruption during the science phase of the mission, and the acquired data were compared favorably with those from the science magnetometer and the model of the International Geophysical Reference Field to within an approximate fixed offset of about 550 nT. Residuals with respect to these data sources are plausibly attributed to offsets resulting from rocket contamination fields and electronic phase shifts. These offsets can be readily mitigated and/or calibrated for a future flight experiment so that the demonstration of this absolute-measuring magnetometer was entirely successful from the perspective of increasing the technological readiness for space flight.

2.
J Res Natl Inst Stand Technol ; 121: 464-475, 2016.
Article in English | MEDLINE | ID: mdl-34434635

ABSTRACT

This article introduces in archival form the Nanolithography Toolbox, a platform-independent software package for scripted lithography pattern layout generation. The Center for Nanoscale Science and Technology (CNST) at the National Institute of Standards and Technology (NIST) developed the Nanolithography Toolbox to help users of the CNST NanoFab design devices with complex curves and aggressive critical dimensions. Using parameterized shapes as building blocks, the Nanolithography Toolbox allows users to rapidly design and layout nanoscale devices of arbitrary complexity through scripting and programming. The Toolbox offers many parameterized shapes, including structure libraries for micro- and nanoelectromechanical systems (MEMS and NEMS) and nanophotonic devices. Furthermore, the Toolbox allows users to precisely define the number of vertices for each shape or create vectorized shapes using Bezier curves. Parameterized control allows users to design smooth curves with complex shapes. The Toolbox is applicable to a broad range of design tasks in the fabrication of microscale and nanoscale devices.

3.
Nano Lett ; 11(10): 4282-7, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21939179

ABSTRACT

Carrier lifetimes of Si micro/nanowires grown by the vapor-liquid-solid method are measured using an extension of the classic contactless photoconductivity decay method. The samples measured consist of a thin aggregated film of oxide passivated wires on a fused silica carrier. Au catalyzed wires in the 392-730 nm diameter range are studied. Recombination in these wires is controlled by the surface or near surface effects, not bulk Au impurities. The lifetimes of Au- and Al-catalyzed wires of comparable diameter are measured. The Al wires are found to have slightly longer lifetimes than those grown with Au at a comparable diameter. Across all samples, the lifetimes measured range was from 0.2 to 1.0 ns. The surface controlled nature of the recombination measured implies larger diameter wires will offer better performance in devices that rely on minority carrier transport.

SELECTION OF CITATIONS
SEARCH DETAIL
...