Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38197035

ABSTRACT

This paper assesses and reports the experience of ten teams working to port, validate, and benchmark several High Performance Computing applications on a novel GPU-accelerated Arm testbed system. The testbed consists of eight NVIDIA Arm HPC Developer Kit systems, each one equipped with a server-class Arm CPU from Ampere Computing and two data center GPUs from NVIDIA Corp. The systems are connected together using InfiniBand interconnect. The selected applications and mini-apps are written using several programming languages and use multiple accelerator-based programming models for GPUs such as CUDA, OpenACC, and OpenMP offloading. Working on application porting requires a robust and easy-to-access programming environment, including a variety of compilers and optimized scientific libraries. The goal of this work is to evaluate platform readiness and assess the effort required from developers to deploy well-established scientific workloads on current and future generation Arm-based GPU-accelerated HPC systems. The reported case studies demonstrate that the current level of maturity and diversity of software and tools is already adequate for large-scale production deployments.

2.
Comput Phys Commun ; 2662021 Sep.
Article in English | MEDLINE | ID: mdl-34168375

ABSTRACT

MFC is an open-source tool for solving multi-component, multi-phase, and bubbly compressible flows. It is capable of efficiently solving a wide range of flows, including droplet atomization, shock-bubble interaction, and bubble dynamics. We present the 5- and 6-equation thermodynamically-consistent diffuse-interface models we use to handle such flows, which are coupled to high-order interface-capturing methods, HLL-type Riemann solvers, and TVD time-integration schemes that are capable of simulating unsteady flows with strong shocks. The numerical methods are implemented in a flexible, modular framework that is amenable to future development. The methods we employ are validated via comparisons to experimental results for shock-bubble, shock-droplet, and shock-water-cylinder interaction problems and verified to be free of spurious oscillations for material-interface advection and gas-liquid Riemann problems. For smooth solutions, such as the advection of an isentropic vortex, the methods are verified to be high-order accurate. Illustrative examples involving shock-bubble-vessel-wall and acoustic-bubble-net interactions are used to demonstrate the full capabilities of MFC.

3.
J Mech Phys Solids ; 1522021 Jul.
Article in English | MEDLINE | ID: mdl-34092810

ABSTRACT

Viscoelastic material properties at high strain rates are needed to model many biological and medical systems. Bubble cavitation can induce such strain rates, and the resulting bubble dynamics are sensitive to the material properties. Thus, in principle, these properties can be inferred via measurements of the bubble dynamics. Estrada et al. (2018) demonstrated such bubble-dynamic high-strain-rate rheometry by using least-squares shooting to minimize the difference between simulated and experimental bubble radius histories. We generalize their technique to account for additional uncertainties in the model, initial conditions, and material properties needed to uniquely simulate the bubble dynamics. Ensemble-based data assimilation minimizes the computational expense associated with the bubble cavitation model, providing a more efficient and scalable numerical framework for bubble-collapse rheometry. We test an ensemble Kalman filter (EnKF), an iterative ensemble Kalman smoother (IEnKS), and a hybrid ensemble-based 4D-Var method (En4D-Var) on synthetic data, assessing their estimations of the viscosity and shear modulus of a Kelvin-Voigt material. Results show that En4D-Var and IEnKS provide better moduli estimates than EnKF. Applying these methods to the experimental data of Estrada et al. (2018) yields similar material property estimates to those they obtained, but provides additional information about uncertainties. In particular, the En4D-Var yields lower viscosity estimates for some experiments, and the dynamic estimators reveal a potential mechanism that is unaccounted for in the model, whereby the apparent viscosity is reduced in some cases due to inelastic behavior, possibly in the form of material damage occurring at bubble collapse.

4.
J Acoust Soc Am ; 147(2): 1126, 2020 02.
Article in English | MEDLINE | ID: mdl-32113277

ABSTRACT

Humpback whales can generate intricate bubbly regions, called bubble nets, via blowholes. Humpback whales appear to exploit these bubble nets for feeding via loud vocalizations. A fully-coupled phase-averaging approach is used to model the flow, bubble dynamics, and corresponding acoustics. A previously hypothesized waveguiding mechanism is assessed for varying acoustic frequencies and net void fractions. Reflections within the bubbly region result in observable waveguiding for only a small range of flow parameters. A configuration of multiple whales surrounding and vocalizing towards an annular bubble net is also analyzed. For a range of flow parameters, the bubble net keeps its core region substantially quieter than the exterior. This approach appears more viable, though it relies upon the cooperation of multiple whales. A spiral bubble net configuration that circumvents this requirement is also investigated. The acoustic wave behaviors in the spiral interior vary qualitatively with the vocalization frequency and net void fraction. The competing effects of vocalization guiding and acoustic attenuation are quantified. Low void fraction cases allow low-frequency waves to partially escape the spiral region, with the remaining vocalizations still exciting the net interior. Higher void fraction nets appear preferable, guiding even low-frequency vocalizations while still maintaining a quiet net interior.

5.
Phys Rev E ; 100(1-1): 012203, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31499874

ABSTRACT

The flow of red blood cells within cylindrical vessels is complex and irregular, so long as the vessel diameter is somewhat larger than the nominal cell size. Long-time-series simulations, in which cells flow 10^{5} vessel diameters, are used to characterize the chaotic kinematics, particularly to inform reduced-order models. The simulation model used includes full coupling between the elastic red blood cell membranes and surrounding viscous fluid, providing a faithful representation of the cell-scale dynamics. Results show that the flow has neither classifiable recurrent features nor a dominant frequency. Instead, its kinematics are sensitive to the initial flow configuration in a way consistent with chaos and Lagrangian turbulence. Phase-space reconstructions show that a low-dimensional attractor does not exist, so the observed long-time dynamics are effectively stochastic. Based on this, a simple Markov chain model for the dynamics is introduced and shown to reproduce the statistics of the cell positions.


Subject(s)
Blood Circulation , Microvessels/physiology , Models, Biological , Biomechanical Phenomena , Nonlinear Dynamics , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...