Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-372037

ABSTRACT

Although neutralizing antibodies against the SARS-CoV-2 spike (S) protein are a goal of COVID-19 vaccines and have received emergency use authorization as therapeutics, viral escape mutants could compromise their efficacy. To define the immune-selected mutational landscape in S protein, we used a VSV-eGFP-SARS-CoV-2-S chimeric virus and 19 neutralizing monoclonal antibodies (mAbs) against the receptor-binding domain (RBD) to generate 50 different escape mutants. The variants were mapped onto the RBD structure and evaluated for cross-resistance to mAbs and convalescent human sera. Each mAb had a unique resistance profile, although many shared residues within an epitope. Some variants (e.g., S477N) were resistant to neutralization by multiple mAbs, whereas others (e.g., E484K) escaped neutralization by convalescent sera, suggesting some humans induce a narrow repertoire of neutralizing antibodies. Comparing the antibody-mediated mutational landscape in S with sequence variation in circulating SARS-CoV-2, we define substitutions that may attenuate neutralizing immune responses in some humans.

SELECTION OF CITATIONS
SEARCH DETAIL