Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Lancet Reg Health Eur ; 37: 100810, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38076629

ABSTRACT

Background: SARS-CoV-2 infections still have a significant impact on the global population. The existing vaccinations have contributed to reducing the severe disease courses, decreasing hospitalisations, and lowering the mortality rate. However, due to the variability of COVID-19 symptoms, the emergence of new variants and the uneven global distribution of vaccines there is still a great need for new therapy options. One promising approach is provided by host-directed therapies. We assessed here the efficacy and safety of MP1032, a host-directed anti-viral/anti-inflammatory drug in hospitalised patients with moderate to severe COVID-19. Methods: In a randomised, double-blind, placebo-controlled, Phase IIa study, patients were randomised 2:1 to receive either 300 mg MP032 bid + Standard-of-Care (SoC) or placebo bid + SoC for 28 days. Eligible patients were ≥18 years old, tested positive for SARS-CoV-2, and had moderate to severe COVID-19 symptoms. The study spanned 20 sites in six countries (Bulgaria, France, Hungary, Italy, Romania, Spain), assessing disease progression according the NIAID scale as the primary outcome on day 14. Secondary objectives included disease progression (day 28), disease resolution (days 14 and 28), mortality rate, COVID-19 related parameters and safety. Exposure-response analyses were performed, linking MP1032 to COVID-19 biomarkers (eGFR, D-dimer). Findings: 132 patients were enrolled to receive MP1032 + SoC (n = 87) or placebo + SoC (n = 45). The patients were all white or Caucasian with a mean (median) age of 60.5 (63) years. Overall, only 10 patients were vaccinated, 5 in each group. No significant risk difference of disease progression could be detected between groups on both day 14 (9.8% MP1032 vs. 11.6% placebo) and day 28 with MH common risk differences of -0.276% (95% CI, -11.634 to 11.081; p = 0.962) and 1.722% (95% CI, -4.576 to 8.019; p = 0.592), respectively.The treatment with MP1032 + SoC was safe and well-tolerated. Overall, 182 TEAEs including 10 SAEs were reported in 53.5% (46/86) of patients of the verum group and in 57.8% (26/45) of patients of the placebo group; the SAEs occurred in 5.8% (5/86) and 6.7% (3/45) of verum and placebo patients, respectively. None of the SAEs was considered as related. Interpretation: Despite the study's limitation in size and the variation in concurrent SoCs, these findings warrant further investigation of MP1032 as a host-directed anti-viral drug candidate. Funding: The study was funded by the COVID-19 Horizon Europe work programme and MetrioPharm AG.

3.
Biomedicines ; 10(12)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36551869

ABSTRACT

Many people infected with the SARS-CoV-2 suffer long-term symptoms, such as "brain fog", fatigue and clotting problems. Explanations for "long COVID" include immune imbalance, incomplete viral clearance and potentially, mitochondrial dysfunction. As conditions with sub-optimal mitochondrial function are associated with initial severity of the disease, their prior health could be key in resistance to long COVID and recovery. The SARs virus redirects host metabolism towards replication; in response, the host can metabolically react to control the virus. Resolution is normally achieved after viral clearance as the initial stress activates a hormetic negative feedback mechanism. It is therefore possible that, in some individuals with prior sub-optimal mitochondrial function, the virus can "tip" the host into a chronic inflammatory cycle. This might explain the main symptoms, including platelet dysfunction. Long COVID could thus be described as a virally induced chronic and self-perpetuating metabolically imbalanced non-resolving state characterised by mitochondrial dysfunction, where reactive oxygen species continually drive inflammation and a shift towards glycolysis. This would suggest that a sufferer's metabolism needs to be "tipped" back using a stimulus, such as physical activity, calorie restriction, or chemical compounds that mimic these by enhancing mitochondrial function, perhaps in combination with inhibitors that quell the inflammatory response.

4.
Immun Ageing ; 17(1): 33, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33292333

ABSTRACT

Infection with SARs-COV-2 displays increasing fatality with age and underlying co-morbidity, in particular, with markers of the metabolic syndrome and diabetes, which seems to be associated with a "cytokine storm" and an altered immune response. This suggests that a key contributory factor could be immunosenescence that is both age-related and lifestyle-induced. As the immune system itself is heavily reliant on mitochondrial function, then maintaining a healthy mitochondrial system may play a key role in resisting the virus, both directly, and indirectly by ensuring a good vaccine response. Furthermore, as viruses in general, and quite possibly this new virus, have also evolved to modulate immunometabolism and thus mitochondrial function to ensure their replication, this could further stress cellular bioenergetics. Unlike most sedentary modern humans, one of the natural hosts for the virus, the bat, has to "exercise" regularly to find food, which continually provides a powerful adaptive stimulus to maintain functional muscle and mitochondria. In effect the bat is exposed to regular hormetic stimuli, which could provide clues on how to resist this virus. In this paper we review the data that might support the idea that mitochondrial health, induced by a healthy lifestyle, could be a key factor in resisting the virus, and for those people who are perhaps not in optimal health, treatments that could support mitochondrial function might be pivotal to their long-term recovery.

5.
Int J Mol Sci ; 21(22)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233817

ABSTRACT

At least since March 2020, the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic and the multi-organ coronavirus disease 2019 (COVID-19) are keeping a firm grip on the world. Although most cases are mild, older patients and those with co-morbidities are at increased risk of developing a cytokine storm, characterized by a systemic inflammatory response leading to acute respiratory distress syndrome and organ failure. The present paper focuses on the small molecule MP1032, describes its mode of action, and gives rationale why it is a promising option for the prevention/treatment of the SARS-CoV-2-induced cytokine storm. MP1032 is a phase-pure anhydrous polymorph of 5-amino-2,3-dihydro-1,4-phthalazinedione sodium salt that exhibits good stability and bioavailability. The physiological action of MP1032 is based on a multi-target mechanism including localized, self-limiting reactive oxygen species (ROS) scavenging activities that were demonstrated in a model of lipopolysaccharide (LPS)-induced joint inflammation. Furthermore, its immune-regulatory and PARP-1-modulating properties, coupled with antiviral effects against SARS-CoV-2, have been demonstrated in various cell models. Preclinical efficacy was elucidated in LPS-induced endotoxemia, a model with heightened innate immune responses that shares many similarities to COVID-19. So far, during oral clinical development with three-month daily administrations, no serious adverse drug reactions occurred, highlighting the outstanding safety profile of MP1032.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Immunologic Factors/pharmacology , Inflammation/drug therapy , Luminol/analogs & derivatives , Pneumonia, Viral/drug therapy , Amination , Animals , Antiviral Agents/chemistry , Betacoronavirus/immunology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/immunology , Cytokines/immunology , Female , Humans , Immunologic Factors/chemistry , Inflammation/immunology , Luminol/chemistry , Luminol/pharmacology , Male , Mice , Mice, Inbred C57BL , Pandemics , Pneumonia, Viral/immunology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/immunology , Reactive Oxygen Species/immunology , SARS-CoV-2 , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...