Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 24(4): 045901, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22185960

ABSTRACT

The structural evolution of Pb(Mg(1/3)Nb(2/3))O(3) (PMN) has been reviewed in terms of characteristic temperatures, length scales and timescales, with a view to considering the overall relaxor behaviour from the perspectives of strain and elasticity. A conventional analysis of lattice parameter data in terms of spontaneous strain and strain/order parameter coupling shows that even though a normal phase transition does not occur the relaxor ordering process is accompanied by a significant volume strain which follows the pattern of a static order parameter evolving according to that expected for a tricritical phase transition with T(c) ≈ 350 K. This matches the evolution of the intensity of the elastic central peak in neutron scattering spectra, and reflects the development of static (or quasistatic) polar nanoregions (PNRs) as if by a mean-field phase transition. Use of a Landau free energy expansion, which includes Γ4(-) order parameter components to describe ferroelectric contributions and an R1(+) order parameter to describe cation ordering together with their formal coupling with strain, then allows the pattern of elastic softening expected for a cubic → rhombohedral phase transition to be anticipated. The extent to which observed softening differs from this static mean-field pattern serves to highlight the additional roles of local heterogeneity and relaxation dynamics in determining the relaxor properties of PMN.

2.
J Phys Condens Matter ; 24(4): 045902, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22186067

ABSTRACT

Elastic and anelastic behaviour of single crystal and ceramic samples of Pb(Mg(1/3)Nb(2/3))O(3) has been investigated at frequencies of ~0.1-1.2 MHz through the temperature interval 10-800 K by resonant ultrasound spectroscopy (RUS). Comparison with data from the literature shows that softening of the shear modulus between the Burns temperature and the freezing interval is independent of frequency. The softening is attributed to coupling between acoustic modes and the relaxation mode(s) responsible for central peaks in Raman and neutron scattering spectra below the Burns temperature, and can be described with Vogel-Fulcher parameters. Shear elastic compliance and dielectric permittivity show similar patterns of temperature dependence through the freezing interval, demonstrating strong coupling between ferroelectric polarization and strain such that the response to applied stress is more or less the same as the response to an applied electric field, with a frequency dependence consistent with Vogel-Fulcher-like freezing in both cases. Differences in detail show, however, that shearing induces flipping between different twin orientations, in comparison with the influence of an electric field, which induces 180° flipping: the activation energy barrier for the former appears to be higher than for the latter. Below the freezing interval, the anelastic loss also has a similar pattern of evolution to the dielectric loss, signifying again that essentially the same mechanism is involved in the freezing process. Overall softening at low temperatures is attributed to the contributions of strain relaxations due to coupling with the local ferroelectric order parameter and of coupling between acoustic modes and continuing relaxational modes of the polar nanostructure. Dissipation is attributed to movement of boundaries between PNRs or between correlated clusters of PNRs. Overall, strain coupling is fundamental to the development of the characteristic strain, dielectric and elastic properties of relaxors.

SELECTION OF CITATIONS
SEARCH DETAIL
...