Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Phys Rev Lett ; 127(12): 127202, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34597094

ABSTRACT

In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion symmetry across the heterointerfaces. A notable example is the interface between polar and nonpolar materials, where valence discontinuities lead to otherwise inaccessible charge and spin states. This approach paved the way for the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wave functions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO_{3}, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and LaAlO_{3}, a polar wide-band-gap insulator. Transmission electron microscopy reveals an atomically sharp LaO/RuO_{2}/SrO interface configuration, leading to excess charge being pinned near the LaAlO_{3}/SrRuO_{3} interface. We demonstrate through magneto-optical characterization, theoretical calculations and transport measurements that the real-space charge reconstruction drives a reorganization of the topological charges in the band structure, thereby modifying the momentum-space Berry curvature in SrRuO_{3}. Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.

2.
Phys Rev Lett ; 114(24): 247002, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-26196997

ABSTRACT

We analyze a t(2g) double-exchange system where the orbital directionality of the itinerant degrees of freedom is a key dynamical feature that self-adjusts in response to doping and leads to a phase diagram dominated by two classes of ground states with zigzag and checkerboard patterns. The prevalence of distinct orderings is tied to the formation of orbital molecules that in one-dimensional paths make insulating zigzag states kinetically more favorable than metallic stripes, thus allowing for a novel doping-induced metal-to-insulator transition. We find that the basic mechanism that controls the magnetic competition is the breaking of orbital directionality through structural distortions, and highlight the consequences of the interorbital Coulomb interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...