Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38673264

ABSTRACT

The purpose of the present study was to learn the morphological, structural, ferroelectric, dielectric, electromechanical, magnetoelectric, and magnetic properties, and DC conductivity of BaTiO3-Ni0.64Zn0.36Fe2O4 (BT-F) multiferroic composites compacted via the free sintering method. The influence of the ferrite content in ceramic composite materials on the functional properties is investigated and discussed. X-ray diffraction studies confirmed the presence of two main phases of the composite, with strong reflections originating from BaTiO3 and weak peaks originating from nickel-zinc ferrite. BT-F ceramic composites have been shown to exhibit multiferroism at room temperature. All studied compositions have high permittivity values and low dielectric loss, while the ferroelectric properties of the BT component are maintained at a high level. On the other hand, magnetic properties depend on the amount of the ferrite phase and are the strongest for the composition with 15 wt.% of F (magnetization at RT is 4.12 emu/g). The magnetoelectric coupling between BT and F phases confirmed by the lock-in technique is the largest for 15 wt.% ferrite. In the present work, the process conditions of the free sintering method for obtaining BT-F multiferroic composite with good electrical and magnetic properties (in one material) were optimized. An improved set of multifunctional properties allows the expansion of the possibilities of using multiferroic composites in microelectronics.

2.
Materials (Basel) ; 16(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37687449

ABSTRACT

In this paper, spark plasma sintering was used to obtain and investigate (Pb0.97Ba0.03)(Zr0.98Ti0.02)1-xSnxO3 (PBZTS) ceramic materials for x = 0, 0.02, 0.04, 0.06, and 0.08. Crystal structure, microstructure, dielectric and ferroelectric properties, and electrical conductivity tests of a series of samples were carried out. The SPS sintering method ensures favorable dielectric and ferroelectric properties of PBZTS ceramic materials. X-ray studies have shown that the material has a perovskite structure. The samples have a densely packed material structure with properly crystallized grains. The fine-grained microstructure of the PZBZTS material with high grain homogeneity allows the application of higher electric fields. Ceramic samples obtained by the SPS method have higher density values than samples obtained by the classical method (FS). The permittivity at room temperature is in the range of 245-282, while at the phase transition temperature is in the range of 10,259-12,221. At room temperature, dielectric loss factor values range from 0.006 to 0.036. The hysteresis loops of PBZTS ceramics have a shape typical for ferroelectric hard materials, and the remnant polarization values range from 0.32 to 0.39 µC/cm2. The activation energy Ea values of the PBZTS samples result mainly from the presence of oxygen vacancies. The PZT material doped with Ba and Sn and sintered via the SPS method has favorable physical parameters for applications in modern devices such as actuators or pulse capacitors.

3.
Materials (Basel) ; 17(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38203903

ABSTRACT

Using the free (pressureless) sintering method, multiferroic ceramic composites based on two ferroelectric materials, i.e., BaTiO3 (B) and Pb0.94Sr0.06 (Zr0.46Ti0.54)0.99Cr0.01O3 (P), and magnetic material, i.e., zinc-nickel ferrite (F) were obtained. Three composite compositions (BP-F) were obtained with a constant 90/10 content (ferroelectric/magnetic) and a variable content of the ferroelectric component (B/P), i.e., 70/30, 50/50, and 30/70. Crystalline structure, microstructural, DC electrical conductivity, dielectric, and ferroelectric properties of multiferroic composites were investigated. The concept of a composite consisting of two ferroelectric components ensures the preservation of sufficiently high ferroelectric properties of multiferroic composites sintered by the free sintering method. Research has shown that the percentage of individual ferroelectric components in the composite significantly affects the functional properties and the entire set of physical parameters of the multiferroic BP-F composite. In the case of the dielectric parameters, the best results were obtained for the composition with a more significant amount of BaTiO3; i.e., permittivity is 1265, spontaneous polarization is 7.90 µC/cm2, and remnant polarization is 5.40 µC/cm2. However, the most advantageous set of performance parameters shows the composite composition of 50BP-F.

4.
Materials (Basel) ; 12(20)2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31600987

ABSTRACT

Ferroelectromagnetic composites based on (1-x)PMN-(x)PT (PMN-PT) powder and Ni-Zn ferrite powder were obtained and are described in this work. As a ferroelectric component, we used (1-x)PMN-(x)PT solid solution (with x = 0.25, 0.28, 0.31, 0.34, 0.37, 0.40), synthesized using the sol-gel method. As a magnetic component, we used nickel-zinc ferrite, obtained using classic ceramic technology. The six compositions of PMN-PT used have rhombohedral symmetry, tetragonal one and mixture of these phases (morphotropic phase area), depending on x. The final ceramic composite samples were obtained using the classic methods involving the calcination route and pressureless final sintering (densification). The properties of the obtained ceramic composite samples were investigated, including microstructure SEM (scanning electron microscope), dielectric properties, electromechanical properties, and DC (Direct Current) electrical conductivity. Results showed that the microstructures of the PP-F composite samples characterized by larger grains were better crystallized, compared with the microstructures of the PMN-PT ceramic samples. The magnetic properties do not depend on the ferroelectric component of the composite samples, while the insertion of ferrite into the PMN-PT compound reduces the values of remnant and spontaneous polarization, as well as the coercive field. The dielectric measurements also indicated that the magnetic subsystem influences the dielectric properties. The present results show that the PP-F ceramic composite has good dielectric, magnetic, and piezoelectric properties, which predisposes this type of material to specific applications in microelectronics and micromechatronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...