Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38869571

ABSTRACT

Due to their unique physical and chemical properties, complex nanostructures based on carbon nanotubes and transition metal oxides are considered promising electrode materials for the fabrication of high-performance supercapacitors with a fast charge rate, high power density, and long cycle life. The crucial role in determining their efficiency is played by the properties of the interface in such nanostructures, among them, the type of chemical bonds between their components. The complementary theoretical and experimental methods, including dispersion-corrected density functional theory (DFT-D3) within GGA-PBE approximation, scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman, X-ray photoelectron, and X-ray absorption spectroscopies, were applied in the present work for the comprehensive investigation of surface morphology, structure, and electronic properties in CuOx/MWCNTs and NiOx/MWCNTs. As a result, the type of interfacial interaction and its correlation with electrochemical characteristics were determined. It was found that the presence of both Ni-O-C and Ni-C bonds can increase the contact between NiO and MWCNTs, and, through this, promote electron transfer between NiO and MWCNTs. For NiOx/MWCNTs, better electrochemical characteristics were observed than for CuOx/MWCNTs, in which the interfacial interaction is determined only by bonding through Cu-O-C bonds. The electrochemical properties of CuOx/MWCNTs and NiOx/MWCNTs were studied to demonstrate the effect of interfacial interaction on their efficiency as electrode materials for supercapacitor applications.

2.
Nanomaterials (Basel) ; 14(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38727329

ABSTRACT

The rational design of composites based on graphene/metal oxides is one of the pillars for advancing their application in various practical fields, particularly gas sensing. In this study, a uniform distribution of ZnO nanoparticles (NPs) through the graphene layer was achieved, taking advantage of amine functionalization. The beneficial effect of amine groups on the arrangement of ZnO NPs and the efficiency of their immobilization was revealed by core-level spectroscopy, pointing out strong ionic bonding between the aminated graphene (AmG) and ZnO. The stability of the resulting Am-ZnO nanocomposite was confirmed by demonstrating that its morphology remains unchanged even after prolonged heating up to 350 °C, as observed by electron microscopy. On-chip multisensor arrays composed of both AmG and Am-ZnO were fabricated and thoroughly tested, showing almost tenfold enhancement of the chemiresistive response upon decorating the AmG layer with ZnO nanoparticles, due to the formation of p-n heterojunctions. Operating at room temperature, the fabricated multisensor chips exhibited high robustness and a detection limit of 3.6 ppm and 5.1 ppm for ammonia and ethanol, respectively. Precise identification of the studied analytes was achieved by employing the pattern recognition technique based on linear discriminant analysis to process the acquired multisensor response.

3.
Nanomaterials (Basel) ; 13(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37299631

ABSTRACT

The facile synthesis of biografted 2D derivatives complemented by a nuanced understanding of their properties are keystones for advancements in biosensing technologies. Herein, we thoroughly examine the feasibility of aminated graphene as a platform for the covalent conjugation of monoclonal antibodies towards human IgG immunoglobulins. Applying core-level spectroscopy methods, namely X-ray photoelectron and absorption spectroscopies, we delve into the chemistry and its effect on the electronic structure of the aminated graphene prior to and after the immobilization of monoclonal antibodies. Furthermore, the alterations in the morphology of the graphene layers upon the applied derivatization protocols are assessed by electron microscopy techniques. Chemiresistive biosensors composed of the aerosol-deposited layers of the aminated graphene with the conjugated antibodies are fabricated and tested, demonstrating a selective response towards IgM immunoglobulins with a limit of detection as low as 10 pg/mL. Taken together, these findings advance and outline graphene derivatives' application in biosensing as well as hint at the features of the alterations of graphene morphology and physics upon its functionalization and further covalent grafting by biomolecules.

4.
ACS Appl Mater Interfaces ; 15(23): 28370-28386, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37253093

ABSTRACT

The artificial olfaction units (or e-noses) capable of room-temperature operation are highly demanded to meet the requests of society in numerous vital applications and developing Internet-of-Things. Derivatized 2D crystals are considered as sensing elements of choice in this regard, unlocking the potential of the advanced e-nose technologies limited by the current semiconductor technologies. Herein, we consider fabrication and gas-sensing properties of On-chip multisensor arrays based on a hole-matrixed carbonylated (C-ny) graphene film with a gradually changed thickness and concentration of ketone groups of up to 12.5 at.%. The enhanced chemiresistive response of C-ny graphene toward methanol and ethanol, of hundred ppm concentration when mixing with air to match permissible exposure OSHA limits, at room-temperature operation is signified. Following thorough characterization via core-level techniques and density functional theory, the predominant role of the C-ny graphene-perforated structure and abundance of ketone groups in advancing the chemiresistive effect is established. Advancing practice applications, selective discrimination of the studied alcohols is approached by linear discriminant analysis employing a multisensor array's vector signal, and the fabricated chip's long-term performance is shown.

5.
Small ; 19(26): e2208265, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36949366

ABSTRACT

Polycrystalline boron-doped diamond is a promising material for high-power aqueous electrochemical applications in bioanalytics, catalysis, and energy storage. The chemical vapor deposition (CVD) process of diamond formation and doping is totally diversified by using high kinetic energies of deuterium substituting habitually applied hydrogen. The high concentration of deuterium in plasma induces atomic arrangements and steric hindrance during synthesis reactions, which in consequence leads to a preferential (111) texture and more effective boron incorporation into the lattice, reaching a one order of magnitude higher density of charge carriers. This provides the surface reconstruction impacting surficial populations of CC dimers, CH, CO groups, and COOH termination along with enhanced kinetics of their abstraction, as revealed by high-resolution core-level spectroscopies. A series of local densities of states were computed, showing a rich set of highly occupied and localized surface states for samples deposited in deuterium, negating the connotations of band bending. The introduction of enhanced incorporation of boron into (111) facet of diamond leads to the manifestation of surface electronic states below the Fermi level and above the bulk valence band edge. This unique electronic band structure affects the charge transfer kinetics, electron affinity, and diffusion field geometry critical for efficient electrolysis, electrocatalysis, and photoelectrochemistry.

6.
Nanomaterials (Basel) ; 13(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36615934

ABSTRACT

The derivatization of graphene to engineer its band structure is a subject of significant attention nowadays, extending the frames of graphene material applications in the fields of catalysis, sensing, and energy harvesting. Yet, the accurate identification of a certain group and its effect on graphene's electronic structure is an intricate question. Herein, we propose the advanced fingerprinting of the epoxide and hydroxyl groups on the graphene layers via core-level methods and reveal the modification of their valence band (VB) upon the introduction of these oxygen functionalities. The distinctive contribution of epoxide and hydroxyl groups to the C 1s X-ray photoelectron spectra was indicated experimentally, allowing the quantitative characterization of each group, not just their sum. The appearance of a set of localized states in graphene's VB related to the molecular orbitals of the introduced functionalities was signified both experimentally and theoretically. Applying the density functional theory calculations, the impact of the localized states corresponding to the molecular orbitals of the hydroxyl and epoxide groups was decomposed. Altogether, these findings unveiled the particular contribution of the epoxide and hydroxyl groups to the core-level spectra and band structure of graphene derivatives, advancing graphene functionalization as a tool to engineer its physical properties.

7.
Small ; 17(52): e2104316, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34704658

ABSTRACT

Engineering of the 2D materials' electronic structure is at the forefront of nanomaterials research nowadays, giving an advance in the development of next-generation photonic devices, e-sensing technologies, and smart materials. Herein, employing core-level spectroscopy methods combined with density functional theory (DFT) modeling, the modification of the graphenes' valence band (VB) upon its derivatization by carboxyls and ketones is revealed. The appearance of a set of localized states in the VB of graphene related to molecular orbitals of the introduced functionalities is signified both experimentally and theoretically. Applying the DFT calculations of the density of states projected on the functional groups, their contributions to the VB structure are decomposed. An empirical approach, allowing one to analyze and predict the impact of a certain functional group on the graphenes' electronic structure in terms of examination of the model molecules, mimicking the introduced functionality, is proposed and validated. The interpretation of the arising states origin is made and their designation, pointing out their symmetry type, is proposed. Taken together, these results guide the band structure engineering of graphene derivatives and give a hint on the mechanisms underlying the alteration of the VB structure of 2D materials upon their derivatization.

8.
ACS Nano ; 15(7): 12358-12366, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34255478

ABSTRACT

Because of their unique atomic structure, 2D materials are able to create an up-to-date paradigm in fundamental science and technology on the way to engineering the band structure and electronic properties of materials on the nanoscale. One of the simplest methods along this path is the superposition of several 2D nanomaterials while simultaneously specifying the twist angle between adjacent layers (θ), which leads to the emergence of Moiré superlattices. The key challenge in 2D nanoelectronics is to obtain a nanomaterial with numerous Moiré superlattices in addition to a high carrier mobility in a stable and easy-to-fabricate material. Here, we demonstrate the possibility of synthesizing twisted multilayer graphene (tMLG) with a number of monolayers NL = 40-250 and predefined narrow ranges of θ = 3-8°, θ = 11-15°, and θ = 26-30°. A 2D nature of the electron transport is observed in the tMLG, and its carrier mobilities are close to those of twisted bilayer graphene (tBLG) (with θ = 30°) between h-BN layers. We demonstrate an undoubtful presence of numerous Moiré superlattices simultaneously throughout the entire tMLG thickness, while the periods of these superlattices are rather close to each other. This offers a challenge of producing a next generation of devices for nanoelectronics, twistronics, and neuromorphic computing for large data applications.

9.
Nanomaterials (Basel) ; 12(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35009995

ABSTRACT

Graphene derivatization to either engineer its physical and chemical properties or overcome the problem of the facile synthesis of nanographenes is a subject of significant attention in the nanomaterials research community. In this paper, we propose a facile and scalable method for the synthesis of thiolated graphene via a two-step liquid-phase treatment of graphene oxide (GO). Employing the core-level methods, the introduction of up to 5.1 at.% of thiols is indicated with the simultaneous rise of the C/O ratio to 16.8. The crumpling of the graphene layer upon thiolation without its perforation is pointed out by microscopic and Raman studies. The conductance of thiolated graphene is revealed to be driven by the Mott hopping mechanism with the sheet resistance values of 2.15 kΩ/sq and dependable on the environment. The preliminary results on the chemiresistive effect of these films upon exposure to ethanol vapors in the mix with dry and humid air are shown. Finally, the work function value and valence band structure of thiolated graphene are analyzed. Taken together, the developed method and findings of the morphology and physics of the thiolated graphene guide the further application of this derivative in energy storage, sensing devices, and smart materials.

10.
Sci Rep ; 10(1): 6902, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32327708

ABSTRACT

In this paper we present a facile method for the synthesis of aminated graphene derivative through simultaneous reduction and amination of graphene oxide via two-step liquid phase treatment with hydrobromic acid and ammonia solution in mild conditions. The amination degree of the obtained aminated reduced graphene oxide is of about 4 at.%, whereas C/O ratio is up to 8.8 as determined by means of X-ray photoelectron spectroscopy. The chemical reactivity of the introduced amine groups is further verified by successful test covalent bonding of the obtained aminated graphene with 3-Chlorobenzoyl chloride. The morphological features and electronic properties, namely conductivity, valence band structure and work function are studied as well, illustrating the influence of amine groups on graphene structure and physical properties. Particularly, the increase of the electrical conductivity, reduction of the work function value and tendency to form wrinkled and corrugated graphene layers are observed in the aminated graphene derivative compared to the pristine reduced graphene oxide. As obtained aminated graphene could be used for photovoltaic, biosensing and catalysis application as well as a starting material for further chemical modifications.

11.
Appl Opt ; 56(3): 515-520, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-28157908

ABSTRACT

We simulate a proof-of-principle design of a wavelength dispersive, parallel spectrometer for use in resonant inelastic x-ray scattering (RIXS). The instrument relies on a multiple-channel reflection zone plate (RZP) array, enabling the recording of fluorescence spectra from an acceptance angle of 18 arc min×19 arc min with a mainly source-size-limited resolving power of (0.2-2.6)×104 over an energy range of 21 eV at the L-edge of Fe around 715 eV. An optimal two-dimensional signal readout preserves the spectral resolution to a large extent for widely open exit apertures of ≳50 mm2. The geometrical parameters are matched to the PEAXIS end station at the BESSY II synchrotron facility, and relaxed RZP line densities of <9×102 mm-1 assure the technical feasibility. An error budget estimation with respect to fabrication and alignment tolerances provides the link to real, RZP-based RIXS experiments in the future.

12.
Opt Express ; 24(20): 22469-22480, 2016 Oct 03.
Article in English | MEDLINE | ID: mdl-27828320

ABSTRACT

X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.

13.
Opt Lett ; 41(1): 29-32, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26696150

ABSTRACT

The feasibility of an off-axis x-ray reflection zone plate to perform wavelength-dispersive spectroscopy, on-axis point focusing, and two-dimensional imaging is demonstrated by means of one and the same diffractive optical element (DOE) at a synchrotron radiation facility. The resolving power varies between 3×101 and 4×102 in the range of 7.6 keV to 9.0 keV, with its maximum at the design energy of 8.3 keV. This result is verified using an adjustable entrance slit, by which horizontal (H) and vertical (V) focusing to 0.85 µm(H) and 1.29 µm(V) is obtained near the sagittal focal plane of the astigmatic configuration. An angular and axial scan proves an accessible field of view of at least 0.6 arcmin × 0.8 arcmin and a focal depth of ±0.86 mm. Supported by the grating efficiency of around 17.5% and a very short pulse elongation, future precision x-ray fluorescence and absorption studies of transition metals at their K-edge on an ultrashort timescale could benefit from our findings.

14.
Phys Chem Chem Phys ; 17(26): 17471-9, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26079102

ABSTRACT

The "gate opening" mechanism in the highly flexible MOF Ni2(2,6-ndc)2dabco (DUT-8(Ni), DUT = Dresden University of Technology) with unprecedented unit cell volume change was elucidated in detail using combined single crystal X-ray diffraction, in situ XRD and EXAFS techniques. The analysis of the crystal structures of closed pore (cp) and large pore (lp) phases reveals a drastic and unique unit cell volume expansion of up to 254%, caused by adsorption of gases, surpassing other gas-pressure switchable MOFs significantly. To a certain extent, the structural deformation is specific for the guest molecule triggering the transformation due to subtle differences in adsorption enthalpy, shape, and kinetic diameter of the guest. Combined adsorption and powder diffraction experiments using nitrogen (77 K), carbon dioxide (195 K), and n-butane (272.5 K) as a probe molecules reveal a one-step structural transformation from cp to lp. In contrast, adsorption of ethane (185 K) or ethylene (169 K) results in a two-step transformation with the formation of intermediate phases. In situ EXAFS during nitrogen adsorption was used for the first time to monitor the local coordination geometry of the metal atoms during the structural transformation in flexible MOFs revealing a unique local deformation of the nickel-based paddle-wheel node.

15.
Opt Express ; 23(7): 8788-99, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25968716

ABSTRACT

An off-axis total external reflection zone plate is applied to wavelength-dispersive X-ray spectrometry in the range from 7.8 keV to 9.0 keV. The resolving power E/ΔE of up to 1.1 × 10(2), demonstrated in a synchrotron proof-of-concept experiment, competes well with existing energy-dispersive instruments in this spectral range. In conjunction with the detection efficiency of (2.2 ± 0.6)%, providing a fairly constant count rate across the 1.2 keV band, the temporal pulse elongation to no more than 1.5 × 10(-15) s opens the door to wide-range, ultra-fast hard X-ray spectroscopy at free-electron lasers (FELs).

16.
J Synchrotron Radiat ; 21(Pt 5): 1090-104, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25177998

ABSTRACT

Here the major upgrades of the femtoslicing facility at BESSY II (Khan et al., 2006) are reviewed, giving a tutorial on how elliptical-polarized ultrashort soft X-ray pulses from electron storage rings are generated at high repetition rates. Employing a 6 kHz femtosecond-laser system consisting of two amplifiers that are seeded by one Ti:Sa oscillator, the total average flux of photons of 100 fs duration (FWHM) has been increased by a factor of 120 to up to 10(6) photons s(-1) (0.1% bandwidth)(-1) on the sample in the range from 250 to 1400 eV. Thanks to a new beamline design, a factor of 20 enhanced flux and improvements of the stability together with the top-up mode of the accelerator have been achieved. The previously unavoidable problem of increased picosecond-background at higher repetition rates, caused by `halo' photons, has also been solved by hopping between different `camshaft' bunches in a dedicated fill pattern (`3+1 camshaft fill') of the storage ring. In addition to an increased X-ray performance at variable (linear and elliptical) polarization, the sample excitation in pump-probe experiments has been considerably extended using an optical parametric amplifier that supports the range from the near-UV to the far-IR regime. Dedicated endstations covering ultrafast magnetism experiments based on time-resolved X-ray circular dichroism have been either upgraded or, in the case of time-resolved resonant soft X-ray diffraction and reflection, newly constructed and adapted to femtoslicing requirements. Experiments at low temperatures down to 6 K and magnetic fields up to 0.5 T are supported. The FemtoSpeX facility is now operated as a 24 h user facility enabling a new class of experiments in ultrafast magnetism and in the field of transient phenomena and phase transitions in solids.

17.
Opt Express ; 22(10): 12583-602, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24921376

ABSTRACT

In the present work, different varied line space (VLS) and reflection zone plate (RZP) gratings are analyzed for their suitability in low-signal femtosecond soft X-ray spectroscopy. The need for high efficiency suggests a straightened focal line whose sharpness and residual curvature will determine the quality. One- and two-dimensional VLS structures feature an attractive trade-off between a sufficient optical performance and a strongly relaxed fabrication, due to moderate line densities which are easily accessible by e-beam lithography. Based on fanned-out RZP arrays, their continuous limit version is identified to generate an almost perfect focal line however, with an aberration level three orders of magnitude better than for the VLS gratings and well below the diffraction limit over large acceptance angles.

18.
Opt Express ; 22(9): 10747-60, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24921776

ABSTRACT

We report on a newly built laser-based tabletop setup which enables generation of femtosecond light pulses in the XUV range employing the process of high-order harmonic generation (HHG) in a gas medium. The spatial, spectral, and temporal characteristics of the XUV beam are presented. Monochromatization of XUV light with minimum temporal pulse distortion is the central issue of this work. Off-center reflection zone plates are shown to be advantageous when selection of a desired harmonic is carried out with the use of a single optical element. A cross correlation technique was applied to characterize the performance of the zone plates in the time domain. By using laser pulses of 25 fs length to pump the HHG process, a pulse duration of 45 fs for monochromatized harmonics was achieved in the present setup.

19.
J Synchrotron Radiat ; 20(Pt 4): 522-30, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23765293

ABSTRACT

Aiming at advancing storage-ring-based ultrafast X-ray science, over the past few years many upgrades have been undertaken to continue improving beamline performance and photon flux at the Femtoslicing facility at BESSY II. In this article the particular design upgrade of one of the key optical components, the zone-plate monochromator (ZPM) beamline, is reported. The beamline is devoted to optical pump/soft X-ray probe applications with 100 fs (FWHM) X-ray pulses in the soft X-ray range at variable polarization. A novel approach consisting of an array of nine off-axis reflection zone plates is used for a gapless coverage of the spectral range between 410 and 1333 eV at a designed resolution of E/ΔE = 500 and a pulse elongation of only 30 fs. With the upgrade of the ZPM the following was achieved: a smaller focus, an improved spectral resolution and bandwidth as well as excellent long-term stability. The beamline will enable a new class of ultrafast applications with variable optical excitation wavelength and variable polarization.

20.
J Phys Chem Lett ; 4(21): 3641-3647, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24466387

ABSTRACT

L-edge spectroscopy of 3d transition metals provides important electronic structure information and has been used in many fields. However, the use of this method for studying dilute aqueous systems, such as metalloenzymes, has not been prevalent because of severe radiation damage and the lack of suitable detection systems. Here we present spectra from a dilute Mn aqueous solution using a high-transmission zone-plate spectrometer at the Linac Coherent Light Source (LCLS). The spectrometer has been optimized for discriminating the Mn L-edge signal from the overwhelming O K-edge background that arises from water and protein itself, and the ultrashort LCLS X-ray pulses can outrun X-ray induced damage. We show that the deviations of the partial-fluorescence yield-detected spectra from the true absorption can be well modeled using the state-dependence of the fluorescence yield, and discuss implications for the application of our concept to biological samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...