Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(38): 34564-34574, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37779956

ABSTRACT

The conditions applied during the electrochemical polishing of aluminum were found to be important parameters for the successive formation of nanoporous alumina films. First, a high-purity Al foil was electrochemically polished in an aqueous solution containing C2H5OH and HClO4 at various sets of conditions, such as applied potential (5-35 V), temperature (0-20 °C), and process duration (10-180 s). Extensive studies of the topography of Al after polishing by scanning electron microscopy and atomic force microscopy allow verification of the correlations between conditions applied during the substrate pretreatment and dimensions of the nanopatterns generated on the metal surface. Next, Al polished samples at two different sets of conditions were used as starting materials for anodization. Unpolished Al samples were also anodized for reference. It was confirmed that electropolishing conditions do not significantly affect the oxide growth rate during anodization and the efficiency of anodic film formation. On the contrary, it was proved that the dimensions of the surface texture formed during Al polishing significantly affect the morphology and pore order within the anodic film. Therefore, it can be stated that it is possible to tune to some extent the arrangement of nanochannels within anodic aluminum oxide films by simply changing conditions during the electropolishing procedure..

2.
Chem Commun (Camb) ; 58(93): 13015-13018, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36341972

ABSTRACT

In this paper, efficient MMA photo O-ATRP protocols conducted inside nanoreactors varying in nanostructured interfaces are reported for the first time. We showed that the microstructure of recovered polymers could be easily tuned just by implementing a given type of nanochannel (d = 10, 19-28, 35, 160 nm).

3.
Mikrochim Acta ; 189(1): 32, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34932168

ABSTRACT

The design of a sandwich-type SERS immunoassay (surface-enhanced Raman spectroscopy) is demonstrated operating in dual surface enhancement and dual-tag paradigm. The capture and detection antibodies are linked to two SERS-active substrates and form together the three-dimensional (3D) structure after specific binding to interleukin 6. A variety of metal combinations is tested (Au-Ag, Au-Au, and Ag-Ag), but an enhanced electromagnetic field is generated only due to coupling of Ag and Au nanoparticles with an Au hexagonal nanoarray. The amplified in that way Raman signals improve the limit of detection over 3 times in comparison to the assay with only one SERS-active substrate. It is also shown that the proper readout of the true-positive signal can be achieved in assays with two Raman tags, and this approach also improves LOD. For the optimal combination of the metal-metal junction and Raman tags, a linear relationship between the Raman signal and the concentration of IL-6 is obtained in the range 0-1000 pg⋅mL-1with LOD of 25.2 pg mL-1and RSD < 10%. The presented proof-of-concept of the SERS immunoassay with the dual-enhancement and dual-tag opens additional opportunities for engineering reliable SERS biosensing.


Subject(s)
Immunoassay/methods , Interleukin-6/analysis , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Antibodies, Immobilized/immunology , Gold/chemistry , Humans , Interleukin-6/immunology , Limit of Detection , Silver/chemistry , Thrombin/analysis , Thrombin/immunology
4.
Molecules ; 26(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498320

ABSTRACT

Herein, we report, for the first time, a comparative study on the electrocatalytic reduction of chloroform on silver in different aqueous supporting electrolytes. Cyclic voltammetry measurements were performed at a wide range of scan rates and concentrations of CHCl3 using 0.05 M NaClO4, NaH2PO4, and Na2HPO4 as supporting electrolytes. We observed that a type of supporting electrolyte anion strongly influences both the potential as well as the current density of the chloroform reduction peak, mainly due to the presence of OH- in an alkaline Na2HPO4 solution, which is a specifically interacting anion. Moreover, the highest sensitivity of the Ag electrode toward CHCl3 reduction was observed in a neutral NaClO4 aqueous solution. It was found that the electroreduction of chloroform at the silver surface occurs via a concerted mechanism regardless of the type of the studied supporting electrolyte.


Subject(s)
Electrolytes/chemistry , Metal Nanoparticles/chemistry , Solutions/chemistry , Water/chemistry , Chloroform , Electrodes , Phosphates/chemistry , Silver/chemistry
5.
Nano Lett ; 20(8): 5714-5719, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32559092

ABSTRACT

Herein we show that the nanostructured interface obtained via modulation of the pore size has a strong impact on the segmental and chain dynamics of two poly(propylene glycol) (PPG) derivatives with various molecular weights (Mn = 4000 g/mol and Mn = 2000 g/mol). In fact, a significant acceleration of the dynamics was observed for PPG infiltrated into ordinary alumina templates (Dp = 36 nm), while bulklike behavior was found for samples incorporated into membranes of modulated diameter (19 nm < Dp < 28 nm). We demostrated that the modulation-induced roughness reduces surface interactions of polymer chains near the interface with respect to the ones adsorbed to the ordinary nanochannels. Interestingly, this effect is noted despite the enhanced wettability of PPG in the latter system. Consequently, as a result of weaker H-bonding surface interactions, the conformation of segments seems to locally mimic the bulk arrangement, leading to bulklike dynamics, highlighting the crucial impact of the interface on the overall behavior of confined materials.

6.
Nanomaterials (Basel) ; 9(2)2019 Feb 24.
Article in English | MEDLINE | ID: mdl-30813485

ABSTRACT

Hybrid materials play an essential role in the development of the energy storage technologies since a multi-constituent system merges the properties of the individual components. Apart from new features and enhanced performance, such an approach quite often allows the drawbacks of single components to be diminished or reduced entirely. The goal of this paper was to prepare and characterize polymer-metal hydroxide (polypyrrole-nickel hydroxide, PPy-Ni(OH)2) nanowire arrays demonstrating good electrochemical performance. Nanowires were fabricated by potential pulse electrodeposition of pyrrole and nickel hydroxide into nanoporous anodic alumina oxide (AAO) template. The structural features of as-obtained PPy-Ni(OH)2 hybrid nanowires were characterized using FE-SEM and TEM analysis. Their chemical composition was confirmed by energy-dispersive x-ray spectroscopy (EDS). The presence of nickel hydroxide in the synthesized PPy-Ni(OH)2 nanowire array was investigated by X-ray photoelectron spectroscopy (XPS). Both FE-SEM and TEM analyses confirmed that the obtained nanowires were composed of a polymer matrix with nanoparticles dispersed within. EDS and XPS techniques confirmed the presence of PPy-Ni(OH)2 in the nanowire array obtained. Optimal working potential range (i.e., available potential window), charge propagation, and cyclic stability of the electrodes were determined with cyclic voltammetry (CV) at various scan rates. Interestingly, the electrochemical stability window for the aqueous electrolyte at PPy-Ni(OH)2 nanowire array electrode was remarkably wider (ca. 2 times) in comparison with the non-modified PPy electrode. The capacitance values, calculated from cyclic voltammetry performed at 20 mV s-1, were 25 F cm-2 for PPy and 75 F cm-2 for PPy-Ni(OH)2 array electrodes. The cyclic stability of the PPy nanowire array electrode up to 100 cycles showed a capacitance fade of about 13%.

7.
RSC Adv ; 9(11): 6396-6408, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-35517298

ABSTRACT

In this paper, we have studied the effect of both hard confinement (nanoporous membranes treated as nanoreactors) and high pressure (compression of system) on the progress of free-radical (FRP) and reversible addition-fragmentation chain transfer (RAFT) polymerizations of selected hardly polymerizable, sterically hindered imidazolium-based ionic monomer 1-octyl-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide ([OVIM][NTf2]). These two innovative approaches, affecting (in a different way) the free volume of the polymerizing system, allows the reduction of the number of toxic substrates/catalysts, satisfying the requirement of green chemistry. It was found that at both conditions (high compression and confinement) the polymerizability of monomer, as well as the control over the reaction and the properties of the produced polyelectrolytes, have increased significantly. However, it should be added that there were noticeable differences between FRP carried out under confinement and at high pressures. Interestingly, by appropriate variation in thermodynamic conditions, it was possible to synthesize polymers of moderate molecular weight (M n ∼ 58 kg mol-1) and relatively low dispersity (D ∼ 1.7); while for the reaction performed within AAO pores of varying diameter (d = 35 nm and d = 150 nm), macromolecules of higher M n but slightly broader dispersity indices (D ∼ 2.2-2.7) were recovered. On the other hand, RAFT polymerization carried out under confinement and at elevated pressures yielded polymers with well-defined properties. Noteworthy is also the fact that nanopolymerization leads to polymers of comparable M n to those obtained at high-pressure studies but at significantly shorter reaction time (t ∼ 2 hours). We believe that the presented data clearly demonstrated that both examined approaches (the compression and application of alumina templates, treated as nanoreactors) could be successfully used as additional driving forces to polymerize sterically hindered monomers and produce well-defined polymers in relatively short times. At the same time, it should be mentioned that both proposed polymerization methods enabled us to omit the addition of metal-based initiators/catalysts, which seem to be a crucial step towards further development of the alternative green synthesis of polyelectrolytes in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...