Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 13(10)2020 May 18.
Article in English | MEDLINE | ID: mdl-32443513

ABSTRACT

Cement-stabilized rammed earth (CSRE) is a sustainable construction material. The use of it allows for economizing on the cost of a structure. These two properties of CSRE are based on the fact that the soil used for the rammed mixture is usually dug close to the construction site, so it has random characteristics. That is the reason for the lack of widely accepted prescriptions for CSRE mixture, which could ascertain high enough compressive strength. Therefore, assessing which components of CSRE have the highest impact on its compressive strength becomes an important issue. There are three machine learning regression tools, i.e., artificial neural networks, decision tree, and random forest, used for predicting the compressive strength based on the relative content of CSRE composites (clay, silt, sand, gravel, cement, and water content). The database consisted of 434 samples of CSRE, which were prepared and crushed for testing purposes. Relatively low prediction errors of aforementioned models allowed for the use of explainable artificial intelligence tools (drop-out loss, mean squared error reduction, accumulated local effect) to rank the influence of the ingredients on the dependent variable-the compressive strength. Consistent results from all above-mentioned methods are discussed and compared to some statistical analysis of selected features. This innovative approach, helpful in designing the construction material is a solid base for reliable conclusions.

2.
ACS Nano ; 6(1): 89-99, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22168594

ABSTRACT

Colloidal quantum dot (CQD) photovoltaics offer a promising approach to harvest the near-IR region of the solar spectrum, where half of the sun's power reaching the earth resides. High external quantum efficiencies have been obtained in the visible region in lead chalcogenide CQD photovoltaics. However, the corresponding efficiencies for band gap radiation in the near-infrared lag behind because the thickness of CQD photovoltaic layers from which charge carriers can be extracted is limited by short carrier diffusion lengths. Here, we investigate, using a combination of electrical and optical characterization techniques, ligand passivation strategies aimed at tuning the density and energetic distribution of charge trap states at PbS nanocrystal surfaces. Electrical and optical measurements reveal a more than 7-fold enhancement of the mobility-lifetime product of PbS CQD films treated with 3-mercaptopropionic acid (MPA) in comparison to traditional organic passivation strategies that have been examined in the literature. We show by direct head-to-head comparison that the greater mobility-lifetime products of MPA-treated devices enable markedly greater short-circuit current and higher power conversion efficiency under AM1.5 illumination. Our findings highlight the importance of selecting ligand treatment strategies capable of passivating a diversity of surface states to enable shallower and lower density trap distributions for better transport and more efficient CQD solar cells.


Subject(s)
Colloids/chemistry , Electric Power Supplies , Lead/chemistry , Quantum Dots , Selenium Compounds/chemistry , Solar Energy , Equipment Design , Equipment Failure Analysis
3.
Nano Lett ; 11(12): 5173-8, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22084839

ABSTRACT

The highest-performing colloidal quantum dot (CQD) photovoltaics (PV) reported to date have relied on high-temperature (>500°C) annealing of electron-accepting TiO2. Room-temperature processing reduces energy payback time and manufacturing cost, enables flexible substrates, and permits tandem solar cells that integrate a small-bandgap back cell atop a low-thermal-budget larger-bandgap front cell. Here we report an electrode strategy that enables a depleted-heterojunction CQD PV device to be fabricated entirely at room temperature. We find that simply replacing the high-temperature-processed TiO2 with a sputtered version of the same material leads to poor performance due to the low mobility of the sputtered oxide. We develop instead a two-layer donor-supply electrode (DSE) in which a highly doped, shallow work function layer supplies a high density of free electrons to an ultrathin TiO2 layer via charge-transfer doping. Using the DSE we build all-room-temperature-processed small-bandgap (1 eV) colloidal quantum dot solar cells having 4% solar power conversion efficiency and high fill factor. These 1 eV bandgap cells are suitable for use as the back junction in tandem solar cells. The DSE concept, combined with control over TiO2 stoichiometry in sputtering, provides a much-needed tunable electrode to pair with quantum-size-effect CQD films.

4.
Adv Mater ; 23(33): 3832-7, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21766353

ABSTRACT

Lead sulfide colloidal quantum dot (CQD) solar cells with a solar power conversion efficiency of 5.6% are reported. The result is achieved through careful optimization of the titanium dioxide electrode that serves as the electron acceptor. Metal-ion-doped sol-gel-derived titanium dioxide electrodes produce a tunable-bandedge, well-passivated materials platform for CQD solar cell optimization.

5.
Nano Lett ; 11(3): 1227-31, 2011 Mar 09.
Article in English | MEDLINE | ID: mdl-21314162

ABSTRACT

The two-photon absorption, 2PA, cross sections of PbS quantum dots, QDs, are theoretically and experimentally investigated and are shown to be enhanced with increasing quantum confinement. This is in contrast to our previous results for CdSe and CdTe QDs where the reduced density of states dominated and resulted in a decrease in 2PA with a decrease in QD size. Qualitatively this trend can be understood by the highly symmetric distribution of conduction and valence band states in PbS that results in an accumulation of allowed 2PA transitions in certain spectral regions. We also measure the frequency nondegenerate 2PA cross sections that are up to five times larger than for the degenerate case. We use a k·p four-band envelope function formalism to model the increasing trend of the two-photon cross sections due to quantum confinement and also due to resonance enhancement in the nondegenerate case.

6.
Nano Lett ; 10(9): 3577-82, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20734976

ABSTRACT

The influence of quantum confinement on the one- and two-photon absorption spectra (1PA and 2PA) of PbS and PbSe semiconductor quantum dots (QDs) is investigated. The results show 2PA peaks at energies where only 1PA transitions are predicted and 1PA peaks where only 2PA transitions are predicted by the often used isotropic k x p four-band envelope function formalism. The first experimentally identified two-photon absorption peak coincides with the energy of the first one photon allowed transition. This first two-photon peak cannot be explained by band anisotropy, verifying that the inversion symmetry of the wave functions is broken and relaxation of the parity selection rules has to be taken into account to explain optical transitions in lead-salt QDs. Thus, while the band anisotropy of the bulk semiconductor plays a role in the absorption spectra, especially for the more anisotropic PbSe QDs, a complete model of the absorption spectra, for both 1PA and 2PA, must also include symmetry breaking of the quantum confined wave functions. These studies clarify the controversy of the origin of spectral features in lead-salt QDs.

8.
J Am Chem Soc ; 132(17): 5952-3, 2010 May 05.
Article in English | MEDLINE | ID: mdl-20387887

ABSTRACT

We report colloidal quantum dot solar cells fabricated under ambient atmosphere with an active area of 2.9 mm(2) that exhibit 3.6% solar power conversion efficiency. The devices are based on PbS tuned via the quantum size effect to have a first excitonic peak at 950 nm. Because the formation of native oxides and sulfates on PbS leads to p-type doping and deep trap formation and because such dopants and traps dramatically influence device performance, prior reports of colloidal quantum dot solar cells have insisted on processing under an inert atmosphere. Here we report a novel ligand strategy in which we first encapsulate the quantum dots in the solution phase with the aid of a strongly bound N-2,4,6-trimethylphenyl-N-methyldithiocarbamate ligand. This allows us to carry out film formation and all subsequent device fabrication under an air atmosphere.

9.
ACS Nano ; 4(2): 869-78, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20104859

ABSTRACT

We report colloidal quantum dot (CQDs) photovoltaics having a approximately 930 nm bandgap. The devices exhibit AM1.5G power conversion efficiencies in excess of 2%. Remarkably, the devices are stable in air under many tens of hours of solar illumination without the need for encapsulation. We explore herein the origins of this orders-of-magnitude improvement in air stability compared to larger PbS dots. We find that small and large dots form dramatically different oxidation products, with small dots forming lead sulfite primarily and large dots, lead sulfate. The lead sulfite produced on small dots results in shallow electron traps that are compatible with excellent device performance; whereas the sulfates formed on large dots lead to deep traps, midgap recombination, and consequent catastrophic loss of performance. We propose and offer evidence in support of an explanation based on the high rate of oxidation of sulfur-rich surfaces preponderant in highly faceted large-diameter PbS colloidal quantum dots.

10.
Science ; 324(5934): 1542-4, 2009 Jun 19.
Article in English | MEDLINE | ID: mdl-19541992

ABSTRACT

Multiexciton generation (MEG) has been indirectly observed in colloidal quantum dots, both in solution and the solid state, but has not yet been shown to enhance photocurrent in an optoelectronic device. Here, we report a class of solution-processed photoconductive detectors, sensitive in the ultraviolet, visible, and the infrared, in which the internal gain is dramatically enhanced for photon energies Ephoton greater than 2.7 times the quantum-confined bandgap Ebandgap. Three thin-film devices with different quantum-confined bandgaps (set by the size of their constituent lead sulfide nanoparticles) show enhancement determined by the bandgap-normalized photon energy, Ephoton/Ebandgap, which is a clear signature of MEG. The findings point to a valuable role for MEG in enhancing the photocurrent in a solid-state optoelectronic device. We compare the conditions on carrier excitation, recombination, and transport for photoconductive versus photovoltaic devices to benefit from MEG.

11.
Med Phys ; 33(8): 3033-45, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16964881

ABSTRACT

A next-generation interventional guidance system is proposed that will enable intraprocedural access to both x-ray and magnetic resonance imaging (MRI) modalities. This closed bore XMR (CBXMR) system is comprised of a conventional radiographic rotating anode x-ray tube and a direct conversion flat panel detector on a rotating gantry positioned adjacent to the bore of a 1.5 T MRI. To assess the feasibility of such a system, we have investigated the degree of compatibility between the x-ray components and the MRI. For /-->B(ext)/ < 200 G the effect on the radiographic tube motor was negligible regardless of the orientation of -->B(ext) with respect to the motor axis of rotation--the frequency of anode rotation remained within 6% of the 3400 rpm frequency measured at 0 G. For /-->B(ext)/ >2400 G the anode slowed down to below 2400 rpm at all orientations. At intermediate B(ext), the frequency of rotation varied between 2400 and 3200 rpm, showing a strong dependence on orientation, with -->B(ext) perpendicular to the tube axis having a much stronger effect on the rotation frequency than -->B(ext) parallel to the tube axis. In contrast to the effect of -->B(ext) on the induction motor, parallel -->B(ext) had a stronger detrimental effect on the cathode-anode electron beam, whose path was at 16 degrees to the tube axis, than the perpendicular -->B(ext). Parallel -->B(ext) of several hundred Gauss had a defocusing effect on the x-ray focal spot. -->B(ext) perpendicular to the electron beam shifted the beam without significant defocusing. We have determined that the direct conversion flat panel detector (FPD) technology is not intrinsically sensitive to -->B(ext), and that the modifications required to make the proposed FPDs MRI compatible are minimal. The homogeneity of the MRI signal in the normal field of view was not significantly degraded by the presence of these x-ray components in the vicinity of the MRI bore entrance.


Subject(s)
Image Enhancement/instrumentation , Image Interpretation, Computer-Assisted/instrumentation , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/instrumentation , Radiography, Interventional/instrumentation , Subtraction Technique , Tomography, X-Ray Computed/instrumentation , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Magnetic Resonance Imaging/methods , Radiography, Interventional/methods , Reproducibility of Results , Sensitivity and Specificity , Systems Integration , Tomography, X-Ray Computed/methods
12.
Appl Opt ; 41(32): 6763-7, 2002 Nov 10.
Article in English | MEDLINE | ID: mdl-12440529

ABSTRACT

When unity reflectance is approached, the Fourier-transform method of calculating the reflectance spectrum of an optical grating modulated by a slowly varying envelope becomes unacceptably inaccurate. The modified Fourier transform method of Bovard [Appl. Opt. 29, 24 (1990)] can achieve complete accuracy for quarter-wave gratings. We report herein the extension of Bovard's method to non-quarter-wave gratings. We demonstrate the accurate deployment of our simplified modified Fourier-transform method to apodized linear gratings and optically apodized nonlinear gratings.

SELECTION OF CITATIONS
SEARCH DETAIL
...