Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ Comput Sci ; 10: e1957, 2024.
Article in English | MEDLINE | ID: mdl-38855211

ABSTRACT

Waste segregation is an essential aspect of a smoothly functioning waste management system. Usually, various recyclable waste types are disposed of together at the source, and this brings in the necessity to segregate them into their categories. Dry waste needs to be separated into its own categories to ensure that the proper procedures are implemented to treat and process it, which leads to an overall increased recycling rate and reduced landfill impact. Paper, plastics, metals, and glass are just a few examples of the many dry waste materials that can be recycled or recovered to create new goods or energy. Over the past years, much research has been conducted to devise effective and productive ways to achieve proper segregation for the waste that is being produced at an ever-increasing rate. This article introduces a multi-class garbage segregation system employing the YOLOv5 object detection model. Our final prototype demonstrates the capability of classifying dry waste categories and segregating them into their respective bins using a 3D-printed robotic arm. Within our controlled test environment, the system correctly segregated waste classes, mainly paper, plastic, metal, and glass, eight out of 10 times successfully. By integrating the principles of artificial intelligence and robotics, our approach simplifies and optimizes the traditional waste segregation process.

2.
Article in English | MEDLINE | ID: mdl-38083194

ABSTRACT

Coronary artery disease (CAD), an acute and life-threatening cardiovascular disease, is a leading cause of mortality and morbidity worldwide. Coronary angiography, the principal diagnostic tool for CAD, is invasive, expensive, and requires a lot of skilled effort. The current study aims to develop an automated and non-invasive CAD detection model and improve its performance as closely as possible to clinically acceptable diagnostic sensitivity. Electrocardiogram (ECG) characteristics are observed to be altered due to CAD and can be studied to develop a screening tool for its detection. The subject's clinical information can help broadly identify the high-cardiac-risk population and serve as a primary step in diagnosing CAD. This paper presents an approach to automatically detect CAD based on clinical data, morphological ECG features, and heart rate variability (HRV) features extracted from short-duration Lead-II ECG recordings. A few popular machine-learning classifiers, including support vector machine (SVM), random forest (RF), K-nearest neighbours (KNN), Gaussian Naïve Bayes (GNB), and multi-layer perceptron (MLP), are trained on the extracted feature space, and their performance is evaluated. Classifiers built by integrating clinical data and features extracted from ECG recordings demonstrated better performance than those built on each feature set separately, and the RF classifier outperforms other considered machine learners and reports an average testing accuracy of 94% and a G-mean score of 92% with a 5-fold cross-validation training accuracy of 95(± 0.04)%.Clinical relevance- The proposed method uses a brief, single-lead ECG recording and performs similarly to current clinical practices in an explainable manner. This makes it suitable for deployment via wearable technology (like smart watch gadgets) and telemonitoring, which may facilitate an earlier and more widespread CAD diagnosis.


Subject(s)
Coronary Artery Disease , Humans , Coronary Artery Disease/diagnosis , Bayes Theorem , Neural Networks, Computer , Coronary Angiography , Electrocardiography/methods
3.
Article in English | MEDLINE | ID: mdl-38083638

ABSTRACT

Fetal phonocardiogram (fPCG), or the electronic recording of fetal heart sounds, is a safe and easily available signal that can be used to monitor fetal wellbeing. In the proposed work an attempt is made to identify twin pregnancies using fPCG data recorded from the fetus with 1/3rd power in octave band filtered output as features to train K-Nearest Neighbor (KNN) and support vector machine (SVM) classifiers. The SVM classifier with the quadratic kernel is able to identify singletons and twins with a positive predictive value of 100% and 79.1% respectively. The KNN classifier with k=10 neighbors is able to identify singletons and twins with a positive predictive value of 100% and 81.8% respectively.Clinical Relevance: Identifying twin pregnancies from singleton is an essential clinical protocol followed during late pregnancy as there may be complications like twin-twin transfusion syndrome, selective fetal growth restriction, and preterm labor in twin pregnancy [1], [2]. Ultrasound imaging is the most commonly used technique for twin pregnancy detection, though it is often not affordable or available in rural or low-income populations. Utilization of fPCG in such circumstances has immense clinical potential.


Subject(s)
Fetofetal Transfusion , Obstetric Labor, Premature , Infant, Newborn , Female , Pregnancy , Humans , Pregnancy, Twin , Twins , Fetus
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 841-844, 2021 11.
Article in English | MEDLINE | ID: mdl-34891421

ABSTRACT

Mitral valve prolapse (MVP) is one of the cardiovascular valve abnormalities that occurs due to the stretching of mitral valve leaflets, which develops in around 2 percent of the population. MVP is usually detected via auscultation and diagnosed with an echocardiogram, which is an expensive procedure. The characteristic auscultatory finding in MVP is a mid-to-late systolic click which is usually followed by a high-pitched systolic murmur. These can be easily detected on a phonocardiogram which is a graphical representation of the auscultatory signal. In this paper, we have proposed a method to automatically identify patterns in the PCG that can help in diagnosing MVP as well as monitor its progression into Mitral Regurgitation. In the proposed methodology the systolic part, which is the region of interest here, is isolated by preprocessing and thresholded Teager-Kaiser energy envelope of the signal. Scalogram images of the systole part are obtained by applying continuous wavelet transform. These scalograms are used to train the convolutional neural network (CNN). A two-layer CNN could identify the event patterns with nearly 100% accuracy on the test dataset with varying sizes (20% - 40% of the entire data). The proposed method shows potential in the quick screening of MVP patients.


Subject(s)
Mitral Valve Insufficiency , Mitral Valve Prolapse , Echocardiography , Humans , Mitral Valve/diagnostic imaging , Mitral Valve Prolapse/diagnostic imaging , Systole
SELECTION OF CITATIONS
SEARCH DETAIL
...