Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 195
Filter
1.
Heliyon ; 10(9): e30012, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707419

ABSTRACT

Background: In this clinical trial, we evaluated the effects of transcutaneous electroacupoint stimulation (TEAS) on postoperative fatigue (POF) in Parkinson disease (PD) patients undergoing deep brain stimulation (DBS) surgery. Methods: A total 60 PD patients undergoing DBS surgery were enrolled. They were randomized to receive either electrical stimulation [alternative frequency 2/10 Hz, dense and disperse, intensity adjusted to the maximum tolerated by the participants (6-15 mAmp)] via surface electrodes (TEAS group) or surface electrodes only without electrical stimulation (Con group) at bilateral Zusanli and Sanyinjiao acupuncture points. All participants received their assigned intervention (TEAS or Con) during the 1st stage of surgery [(except during microelectrode recording (MER)] and the entire 2nd stage of surgery. Intraoperative anesthetic requirements were adjusted based on bispectral index (BIS) monitor. POF was assessed by Christensen fatigue scales (ChrFS), along with Quality of Recovery-15 (QoR-15) and mini-mental state examination (MMSE) postoperatively over a 7-day-period. We recorded the usage of rescue analgesics and anti-emetics. Results: Fifty-nine patients' datasets were included for final analyses. Fewer patients in TEAS experienced severe POF (defined as ChrFS ≥6) at T3 than those in the Con group (TEAS vs. Con: 7 vs. 22, p < 0.001). During the 1st stage of surgery, more patients in Con group required dexmedetomidine infusion (TEAS vs. Con: 2 vs. 6; P < 0.01). Total dosages of propofol and remifanil during the 2nd stage of surgery were TEAS vs. Con: 374.7 ± 61.2 vs 421.5 ± 81.9; p < 0.001 and 572.3 ± 82.0 vs. 662 ± 148.2; P < 0.001, respectively. Postoperative rescue analgesics (TEAS vs. Con: 2 vs. 6; P < 0.001) were used less in the TEAS group. TEAS patients reported better POF, MMSE and QoR15 scores than those in the Con group during most of the assessment period. Conclusions: Intraoperative TEAS decreased the severity of POF, reduced intraoperative anesthetic requirements and facilitated post-DBS recovery in this group of PD patients.

2.
PLoS Pathog ; 20(5): e1012204, 2024 May.
Article in English | MEDLINE | ID: mdl-38709834

ABSTRACT

Since the COVID-19 outbreak, raccoon dogs have been suggested as a potential intermediary in transmitting SARS-CoV-2 to humans. To understand their role in the COVID-19 pandemic and the species barrier for SARS-CoV-2 transmission to humans, we analyzed how their ACE2 protein interacts with SARS-CoV-2 spike protein. Biochemical data showed that raccoon dog ACE2 is an effective receptor for SARS-CoV-2 spike protein, though not as effective as human ACE2. Structural comparisons highlighted differences in the virus-binding residues of raccoon dog ACE2 compared to human ACE2 (L24Q, Y34H, E38D, T82M, R353K), explaining their varied effectiveness as receptors for SARS-CoV-2. These variations contribute to the species barrier that exists between raccoon dogs and humans regarding SARS-CoV-2 transmission. Identifying these barriers can help assess the susceptibility of other mammals to SARS-CoV-2. Our research underscores the potential of raccoon dogs as SARS-CoV-2 carriers and identifies molecular barriers that affect the virus's ability to jump between species.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Raccoon Dogs , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Raccoon Dogs/virology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Humans , COVID-19/virology , COVID-19/transmission , COVID-19/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Receptors, Virus/metabolism , Receptors, Virus/chemistry , Protein Binding
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124403, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38710138

ABSTRACT

In order to make novel breakthroughs in molecular salt studies of BCS class-IV antifungal medication bifonazole (BIF), a salification-driven strategy towards ameliorating attributes and aiding augment efficiency is raised. This strategy fully harnesses structural characters together attributes and benefits of caffeic acid (CAF) to concurrently enhance dissolvability and permeability of BIF by introducing the two ingredients into the identical molecular salt lattice through the salification reaction, which, coupled with the aroused potential activity of CAF significantly amplifies the antifungal efficacy of BIF. Guided by this route, the first BIF-organic molecular salt, BIF-CAF, is directionally designed and synthesized with satisfactorily structural characterizations and integrated theoretical and experimental explorations on the pharmaceutical properties. Single-crystal X-ray diffraction resolving confirms that there is a lipid-water amphiphilic sandwich structure constructed by robust charge-assistant hydrogen bonds in the salt crystal, endowing the molecular salt with the potential to enhance both dissolvability and permeability relative to the parent drug, which is validated by experimental evaluations. Remarkably, the comprehensive DFT-based theoretical investigations covering frontier molecular orbital, molecular electrostatic potential, Hirshfeld surface analysis, reduced density gradient, topology, sphericity and planarity analysis strongly support these observations, thereby allowing some positive relationships between macroscopic properties and microstructures of the molecular salt can be made. Intriguingly, the optimal properties, together with the stimulated activity of CAF markedly augment in vitro antifungal ability of the molecular salt, with magnifying inhibition zones and reducing minimum inhibitory concentrations. These findings fill in the gaps on researches of BIF-organic molecular salt, and adequately exemplify the feasibility and validity by integrating theoretical and experimental approaches to resolve BIF's problems via the salification-driven tactic.


Subject(s)
Antifungal Agents , Caffeic Acids , Imidazoles , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Imidazoles/chemistry , Imidazoles/pharmacology , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Salts/chemistry , Quantum Theory , Models, Molecular , Microbial Sensitivity Tests , Crystallography, X-Ray , Hydrogen Bonding , Static Electricity
4.
Aging Clin Exp Res ; 36(1): 111, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743351

ABSTRACT

BACKGROUND: Delirium is common among elderly patients in the intensive care unit (ICU) and is associated with prolonged hospitalization, increased healthcare costs, and increased risk of death. Understanding the potential risk factors and early prevention of delirium is critical to facilitate timely intervention that may reverse or mitigate the harmful consequences of delirium. AIM: To clarify the effects of pre-admission falls on ICU outcomes, primarily delirium, and secondarily pressure injuries and urinary tract infections. METHODS: The study relied on data sourced from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Statistical tests (Wilcoxon rank-sum or chi-squared) compared cohort characteristics. Logistic regression was employed to investigate the association between a history of falls and delirium, as well as secondary outcomes, while Kaplan-Meier survival curves were used to assess short-term survival in delirium and non-delirium patients. RESULTS: Study encompassed 22,547 participants. Delirium incidence was 40%, significantly higher in patients with a history of falls (54.4% vs. 34.5%, p < 0.001). Logistic regression, controlling for confounders, not only confirmed that a history of falls elevates the odds of delirium (OR: 2.11; 95% CI: 1.97-2.26; p < 0.001) but also showed it increases the incidence of urinary tract infections (OR:1.50; 95% CI:1.40-1.62; p < 0.001) and pressure injuries (OR:1.36; 95% CI:1.26-1.47; p < 0.001). Elderly delirium patients exhibited lower 30-, 180-, and 360-day survival rates than non-delirium counterparts (all p < 0.001). CONCLUSIONS: The study reveals that history of falls significantly heighten the risk of delirium and other adverse outcomes in elderly ICU patients, leading to decreased short-term survival rates. This emphasizes the critical need for early interventions and could inform future strategies to manage and prevent these conditions in ICU settings.


Subject(s)
Accidental Falls , Critical Illness , Delirium , Intensive Care Units , Humans , Delirium/epidemiology , Aged , Accidental Falls/statistics & numerical data , Female , Male , Aged, 80 and over , Cohort Studies , Risk Factors , Hospitalization , Incidence , Urinary Tract Infections/epidemiology
5.
Curr Res Food Sci ; 8: 100746, 2024.
Article in English | MEDLINE | ID: mdl-38681526

ABSTRACT

Hemp (Cannabis sativa L.) is increasingly gaining traction as a novel and sustainable source of plant protein. Accordingly, the aim of this study was to investigate the effectiveness of two protein extraction methods, alkaline extraction coupled with isoelectric precipitation (AE-IEP) and salt extraction coupled with ultrafiltration (SE-UF) in producing hemp protein isolates (pH-HPI and salt-HPI) with high purity and yield. Structural characterization as impacted by extraction method and cultivar was performed and related to functional performance and nutritional quality. Both extraction methods, with carefully selected parameters, resulted in HPI with high purity (86.6-88.1% protein) and protein extraction yields (81.6-87.3%). All HPI samples had poor solubility (∼9-20%) at neutral pH compared to commercial soy protein and pea protein isolates (cSPI, cPPI). A relatively high surface hydrophobicity and low surface charge contributed to such poor solubility of HPI. However, HPI demonstrated similar solubility at acidic pH (50-67%) and comparable gel strength (up to 24 N) to cSPI. Comparing experimental amino acid composition to the theoretical amino acid distribution in hemp protein provided insights to the functional performance of the protein isolates. While pH-HPI demonstrated better functionality than salt-HPI, minimal structural, functional, and nutritional differences were noted among the pH-HPI samples extracted from four different cultivars. Overall, results from this work could be used to guide future attempts to further develop successful protein extraction processes, and to provide valuable insights to propel breeding efforts that target enhanced hemp protein characteristics for food applications.

6.
Sci Bull (Beijing) ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38670853

ABSTRACT

Chronic hepatitis B virus (HBV) infection can lead to advanced liver pathology. Here, we establish a transgenic murine model expressing a basic core promoter (BCP)-mutated HBV genome. Unlike previous studies on the wild-type virus, the BCP-mutated HBV transgenic mice manifest chronic liver injury that culminates in cirrhosis and tumor development with age. Notably, agonistic anti-Fas treatment induces fulminant hepatitis in these mice even at a negligible dose. As the BCP mutant exhibits a striking increase in HBV core protein (HBc) expression, we posit that HBc is actively involved in hepatocellular injury. Accordingly, HBc interferes with Fis1-stimulated mitochondrial recruitment of Tre-2/Bub2/Cdc16 domain family member 15 (TBC1D15). HBc may also inhibit multiple Rab GTPase-activating proteins, including Rab7-specific TBC1D15 and TBC1D5, by binding to their conserved catalytic domain. In cells under mitochondrial stress, HBc thus perturbs mitochondrial dynamics and prevents the recycling of damaged mitochondria. Moreover, sustained HBc expression causes lysosomal consumption via Rab7 hyperactivation, which further hampers late-stage autophagy and substantially increases apoptotic cell death. Finally, we show that adenovirally expressed HBc in a mouse model is directly cytopathic and causes profound liver injury, independent of antigen-specific immune clearance. These findings reveal an unexpected cytopathic role of HBc, making it a pivotal target for HBV-associated liver disease treatment. The BCP-mutated HBV transgenic mice also provide a valuable model for understanding chronic hepatitis B progression and for the assessment of therapeutic strategies.

7.
J Ethnopharmacol ; : 118260, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38685367

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Wumei Wan (WMW), a traditional Chinese medicine prescription, has been proved to be effective in treating Colitis-associated colorectal cancer (CAC), but it has not been proven to be effective in different stages of CAC. AIM OF THE STUDY: The purpose of our study is to investigate the therapeutic effect and mechanism of WMW on the progression of CAC. MATERIALS AND METHODS: Azioximethane (AOM) and dextran sulfate sodium (DSS) were used to treat mice for the purpose of establishing CAC models. WMW was administered in different stages of CAC. The presentative chemical components in WMW were confirmed by UHPLCQTOF/MS under the optimized conditions. The detection of inflammatory cytokines in the serum and colon of mice were estimated by qRT-PCR and ELISA. The changes of T cells and myeloid-derived suppressor cells (MDSCs) in each group were detected by flow cytometry. The metabolic components in serum of mice were detected by UPLC-MS/MS. Expression of genes and proteins were detected by eukaryotic transcriptomics and western blot to explore the key pathway of WMW in preventing CAC. RESULTS: WMW had significant effect on inhibiting inflammatory responses and tumors during the early development stage of CAC when compared to other times. WMW increased the length of mice's colons, reduced the level of IL-1ß, IL-6, TNF-α in colon tissues, and effectively alleviated colonic inflammation, and improved the pathological damage of colon tissues. WMW could significantly reduce the infiltration of MDSCs in the spleen, increase CD4+ T cells and CD8+ T cells in the spleen of CAC mice, and effectively reform the immune microenvironment in CAC mice. Transcriptomics analysis revealed that 2204 genes had different patterns of overlap in the colon tissues of mice between control group, AOM+DSS group, and early administration of WMW group. And KEGG enrichment analysis showed that PI3K/Akt signaling pathway, ECM-receptor interaction, IL-17 signaling pathway, MAPK signaling pathway, pancreatic secretion, thermogenesis, and Rap1 signaling pathway were all involved. The serum metabolomics results of WMW showed that the metabolic compositions of the control group, AOM+DSS group and the early stage of WMW were different, and 42 differential metabolites with the opposite trends of changes were screened. The metabolic pathways mainly included pyrimidine metabolism, glycine, serine and threonine metabolism, tryptophan metabolism, and purine metabolism. And amino acids and related metabolites may play an important role in WMW prevention of CAC. CONCLUSION: WMW can effectively prevent the occurrence and development of CAC, especially in the initial stage. WMW can reduce the immune infiltration of MDSCs in the early stage. Early intervention of WMW can improve the metabolic disorder caused by AOM+DSS, especially correct the amino acid metabolism. PI3K/Akt signaling pathway was inhabited in early administration of WMW, which can regulate the amplification and function of MDSCs.

8.
J Mol Biol ; 436(10): 168568, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583515

ABSTRACT

Porphyromonas gingivalis, an anaerobic CFB (Cytophaga, Fusobacterium, and Bacteroides) group bacterium, is the keystone pathogen of periodontitis and has been implicated in various systemic diseases. Increased antibiotic resistance and lack of effective antibiotics necessitate a search for new intervention strategies. Here we report a 3.5 Å resolution cryo-EM structure of P. gingivalis RNA polymerase (RNAP). The structure displays new structural features in its ω subunit and multiple domains in ß and ß' subunits, which differ from their counterparts in other bacterial RNAPs. Superimpositions with E. coli RNAP holoenzyme and initiation complex further suggest that its ω subunit may contact the σ4 domain, thereby possibly contributing to the assembly and stabilization of initiation complexes. In addition to revealing the unique features of P. gingivalis RNAP, our work offers a framework for future studies of transcription regulation in this important pathogen, as well as for structure-based drug development.


Subject(s)
Bacterial Proteins , DNA-Directed RNA Polymerases , Porphyromonas gingivalis , Bacterial Proteins/chemistry , Cryoelectron Microscopy , DNA-Directed RNA Polymerases/chemistry , Escherichia coli , Models, Molecular , Porphyromonas gingivalis/enzymology , Protein Conformation , Protein Subunits/chemistry
9.
J Clin Hypertens (Greenwich) ; 26(4): 425-430, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501749

ABSTRACT

Previous work comparing safety and effectiveness outcomes for new initiators of angiotensin converting-enzyme inhibitors (ACEi) and thiazides demonstrated more favorable outcomes for thiazides, although cohort definitions allowed for addition of a second antihypertensive medication after a week of monotherapy. Here, we modify the monotherapy definition, imposing exit from cohorts upon addition of another antihypertensive medication. We determine hazard ratios (HR) for 55 safety and effectiveness outcomes over six databases and compare results to earlier findings. We find, for all primary outcomes, statistically significant differences in effectiveness between ACEi and thiazides were not replicated (HRs: 1.11, 1.06, 1.12 for acute myocardial infarction, hospitalization with heart failure and stroke, respectively). While statistical significance is similarly lost for several safety outcomes, the safety profile of thiazides remains more favorable. Our results indicate a less striking difference in effectiveness of thiazides compared to ACEi and reflect some sensitivity to the monotherapy cohort definition modification.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Hypertension , Humans , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Antihypertensive Agents/adverse effects , Diuretics/adverse effects , Hypertension/drug therapy , Sodium Chloride Symporter Inhibitors/adverse effects , Thiazides/adverse effects
10.
Ophthalmol Retina ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38519026

ABSTRACT

PURPOSE: To characterize the incidence of kidney failure associated with intravitreal anti-VEGF exposure; and compare the risk of kidney failure in patients treated with ranibizumab, aflibercept, or bevacizumab. DESIGN: Retrospective cohort study across 12 databases in the Observational Health Data Sciences and Informatics (OHDSI) network. SUBJECTS: Subjects aged ≥ 18 years with ≥ 3 monthly intravitreal anti-VEGF medications for a blinding disease (diabetic retinopathy, diabetic macular edema, exudative age-related macular degeneration, or retinal vein occlusion). METHODS: The standardized incidence proportions and rates of kidney failure while on treatment with anti-VEGF were calculated. For each comparison (e.g., aflibercept versus ranibizumab), patients from each group were matched 1:1 using propensity scores. Cox proportional hazards models were used to estimate the risk of kidney failure while on treatment. A random effects meta-analysis was performed to combine each database's hazard ratio (HR) estimate into a single network-wide estimate. MAIN OUTCOME MEASURES: Incidence of kidney failure while on anti-VEGF treatment, and time from cohort entry to kidney failure. RESULTS: Of the 6.1 million patients with blinding diseases, 37 189 who received ranibizumab, 39 447 aflibercept, and 163 611 bevacizumab were included; the total treatment exposure time was 161 724 person-years. The average standardized incidence proportion of kidney failure was 678 per 100 000 persons (range, 0-2389), and incidence rate 742 per 100 000 person-years (range, 0-2661). The meta-analysis HR of kidney failure comparing aflibercept with ranibizumab was 1.01 (95% confidence interval [CI], 0.70-1.47; P = 0.45), ranibizumab with bevacizumab 0.95 (95% CI, 0.68-1.32; P = 0.62), and aflibercept with bevacizumab 0.95 (95% CI, 0.65-1.39; P = 0.60). CONCLUSIONS: There was no substantially different relative risk of kidney failure between those who received ranibizumab, bevacizumab, or aflibercept. Practicing ophthalmologists and nephrologists should be aware of the risk of kidney failure among patients receiving intravitreal anti-VEGF medications and that there is little empirical evidence to preferentially choose among the specific intravitreal anti-VEGF agents. FINANCIAL DISCLOSURES: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

11.
mBio ; 15(4): e0041924, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38501920

ABSTRACT

The discovery of functional amyloids in bacteria dates back several decades, and our understanding of the Escherichia coli curli biogenesis system has gradually expanded over time. However, due to its high aggregation propensity and intrinsically disordered nature, CsgA, the main structural component of curli fibrils, has eluded comprehensive structural characterization. Recent advancements in cryo-electron microscopy (cryo-EM) offer a promising tool to achieve high-resolution structural insights into E. coli CsgA fibrils. In this study, we outline an approach to addressing the colloidal instability challenges associated with CsgA, achieved through engineering and electrostatic repulsion. Then, we present the cryo-EM structure of CsgA fibrils at 3.62 Å resolution. This structure provides new insights into the cross-ß structure of E. coli CsgA. Additionally, our study identifies two distinct spatial arrangements within several CsgA fibrils, a 2-CsgA-fibril pair and a 3-CsgA-fibril bundle, shedding light on the intricate hierarchy of the biofilm extracellular matrix and laying the foundation for precise manipulation of CsgA-derived biomaterials.IMPORTANCEThe visualization of the architecture of Escherichia coli CsgA amyloid fibril has been a longstanding research question, for which a high-resolution structure is still unavailable. CsgA serves as a major subunit of curli, the primary component of the extracellular matrix generated by bacteria. The support provided by this extracellular matrix enables bacterial biofilms to resist antibiotic treatment, significantly impacting human health. CsgA has been identified in members of Enterobacteriaceae, with pathogenic E. coli being the most well-known model system. Our novel insights into the structure of E. coli CsgA protofilaments form the basis for drug design targeting diseases associated with biofilms. Additionally, CsgA is widely researched in biomaterials due to its self-assembly characteristics. The resolved spatial arrangements of CsgA amyloids revealed in our study will further enhance the precision design of functional biomaterials. Therefore, our study uniquely contributes to the understanding of CsgA amyloids for both microbiology and material science.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Humans , Escherichia coli/chemistry , Escherichia coli Proteins/chemistry , Amyloid , Cryoelectron Microscopy , Biofilms , Biocompatible Materials , Bacterial Proteins/chemistry
13.
Animals (Basel) ; 14(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473118

ABSTRACT

Resource partitioning may allow species coexistence. Sand dunes in the typical steppe of Alxa Desert Inner Mongolia, China, consisting of desert, shrub, and grass habitats, provide an appropriate system for studies of spatial niche partitioning among small mammals. In this study, the spatial niche characteristics of four rodents, Orientallactaga sibirica, Meriones meridianus, Dipus sagitta, and Phodopus roborovskii, and their responses to environmental changes in the Alxa Desert were studied from 2017 to 2021. Using the capture-mark-recapture method, we tested if desert rodents with different biological characteristics and life history strategies under heterogeneous environmental conditions allocate resources in spatial niches to achieve sympatric coexistence. We investigated the influence of environmental factors on the spatial niche breadth of rodents using random forest and redundancy analyses. We observed that the spatial niche overlap between O. sibirica and other rodents is extremely low (overlap index ≤ 0.14). P. roborovskii had the smallest spatial niche breadth. Spatial niche overlap was observed in two distinct species pairs, M. meridianus and D. sagitta, and P. roborovskii and D. sagitta. The Pielou evenness index of rodent communities is closely related to the spatial distribution of rodents, and the concealment of habitats is a key factor affecting the spatial occupation of rodents.

14.
medRxiv ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38370787

ABSTRACT

Background: SGLT2 inhibitors (SGLT2is) and GLP-1 receptor agonists (GLP1-RAs) reduce major adverse cardiovascular events (MACE) in patients with type 2 diabetes mellitus (T2DM). However, their effectiveness relative to each other and other second-line antihyperglycemic agents is unknown, without any major ongoing head-to-head trials. Methods: Across the LEGEND-T2DM network, we included ten federated international data sources, spanning 1992-2021. We identified 1,492,855 patients with T2DM and established cardiovascular disease (CVD) on metformin monotherapy who initiated one of four second-line agents (SGLT2is, GLP1-RAs, dipeptidyl peptidase 4 inhibitor [DPP4is], sulfonylureas [SUs]). We used large-scale propensity score models to conduct an active comparator, target trial emulation for pairwise comparisons. After evaluating empirical equipoise and population generalizability, we fit on-treatment Cox proportional hazard models for 3-point MACE (myocardial infarction, stroke, death) and 4-point MACE (3-point MACE + heart failure hospitalization) risk, and combined hazard ratio (HR) estimates in a random-effects meta-analysis. Findings: Across cohorts, 16·4%, 8·3%, 27·7%, and 47·6% of individuals with T2DM initiated SGLT2is, GLP1-RAs, DPP4is, and SUs, respectively. Over 5·2 million patient-years of follow-up and 489 million patient-days of time at-risk, there were 25,982 3-point MACE and 41,447 4-point MACE events. SGLT2is and GLP1-RAs were associated with a lower risk for 3-point MACE compared with DPP4is (HR 0·89 [95% CI, 0·79-1·00] and 0·83 [0·70-0·98]), and SUs (HR 0·76 [0·65-0·89] and 0·71 [0·59-0·86]). DPP4is were associated with a lower 3-point MACE risk versus SUs (HR 0·87 [0·79-0·95]). The pattern was consistent for 4-point MACE for the comparisons above. There were no significant differences between SGLT2is and GLP1-RAs for 3-point or 4-point MACE (HR 1·06 [0·96-1·17] and 1·05 [0·97-1·13]). Interpretation: In patients with T2DM and established CVD, we found comparable cardiovascular risk reduction with SGLT2is and GLP1-RAs, with both agents more effective than DPP4is, which in turn were more effective than SUs. These findings suggest that the use of GLP1-RAs and SGLT2is should be prioritized as second-line agents in those with established CVD. Funding: National Institutes of Health, United States Department of Veterans Affairs.

15.
Adv Mater ; : e2312934, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349956

ABSTRACT

Stable Zn anodes with high utilization rate are urgently required to promote the specific and volumetric energy densities of Zn-ion batteries for practical applications. Herein, contrary to the widely utilized surface coating on Zn anodes, this work shows that a zinc foil with a backside coated layer delivers much enhanced cycling stability even under high depth of discharge. The backside coating significantly reduces stress concentration, accelerates heat diffusion, and facilitates electron transfer, thus effectively preventing dendrite growth and structural damage at high Zn utilization. As a result, the developed anode can be stably cycled for 334 h at 85.5% Zn utilization, which outperforms bare Zn and previously reported results on surface-coated Zn foils. An NVO-based full cell also shows stable performance with high Zn utilization rate (69.4%), low negative-positive electrodes ratio (1.44), and high specific/volumetric energy densities (155.8 Wh kg-1/178 Wh L-1), which accelerates the progress toward practical zinc-ion batteries.

16.
Biometrics ; 80(1)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38372402

ABSTRACT

Viral deep-sequencing data play a crucial role toward understanding disease transmission network flows, providing higher resolution compared to standard Sanger sequencing. To more fully utilize these rich data and account for the uncertainties in outcomes from phylogenetic analyses, we propose a spatial Poisson process model to uncover human immunodeficiency virus (HIV) transmission flow patterns at the population level. We represent pairings of individuals with viral sequence data as typed points, with coordinates representing covariates such as gender and age and point types representing the unobserved transmission statuses (linkage and direction). Points are associated with observed scores on the strength of evidence for each transmission status that are obtained through standard deep-sequence phylogenetic analysis. Our method is able to jointly infer the latent transmission statuses for all pairings and the transmission flow surface on the source-recipient covariate space. In contrast to existing methods, our framework does not require preclassification of the transmission statuses of data points, and instead learns them probabilistically through a fully Bayesian inference scheme. By directly modeling continuous spatial processes with smooth densities, our method enjoys significant computational advantages compared to previous methods that rely on discretization of the covariate space. We demonstrate that our framework can capture age structures in HIV transmission at high resolution, bringing valuable insights in a case study on viral deep-sequencing data from Southern Uganda.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV Infections/epidemiology , Phylogeny , Bayes Theorem
17.
Br J Anaesth ; 132(4): 735-745, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336518

ABSTRACT

BACKGROUND: Cigarette smoking is commonly reported among chronic pain patients in the clinic. Although chronic nicotine exposure is directly linked to nociceptive hypersensitivity in rodents, underlying neurobiological mechanisms remain unknown. METHODS: Multi-tetrode recordings in freely moving mice were used to test the activity of dopaminergic projections from the ventral tegmental area (VTA) to pyramidal neurones in the anterior cingulate cortex (ACC) in chronic nicotine-treated mice. The VTA→ACC dopaminergic pathway was inhibited by optogenetic manipulation to detect chronic nicotine-induced allodynia (pain attributable to a stimulus that does not normally provoke pain) assessed by von Frey monofilaments (force units in g). RESULTS: Allodynia developed concurrently with chronic (28-day) nicotine exposure in mice (0.36 g [0.0141] vs 0.05 g [0.0018], P<0.0001). Chronic nicotine activated dopaminergic projections from the VTA to pyramidal neurones in the ACC, and optogenetic inhibition of VTA dopaminergic terminals in the ACC alleviated chronic nicotine-induced allodynia in mice (0.06 g [0.0064] vs 0.28 g [0.0428], P<0.0001). Moreover, optogenetic inhibition of Drd2 dopamine receptor signalling in the ACC attenuated nicotine-induced allodynia (0.07 g [0.0082] vs 0.27 g [0.0211], P<0.0001). CONCLUSIONS: These findings implicate a role of Drd2-mediated dopaminergic VTA→ACC pathway signalling in chronic nicotine-elicited allodynia.


Subject(s)
Gyrus Cinguli , Nicotine , Humans , Mice , Animals , Nicotine/pharmacology , Hyperalgesia/chemically induced , Dopamine/metabolism , Pain
18.
PeerJ ; 12: e16811, 2024.
Article in English | MEDLINE | ID: mdl-38406275

ABSTRACT

Dipus sagitta is a major rodent found in arid environments and desert areas. They feed on plant seeds, young branches and some small insects, and have hibernating habits. Peak Dipus sagitta numbers impact the construction of the plant community in the environment, but also have a human impact as these rodents carry a variety of parasitic fleas capable of spreading serious diseases to humans. Based on 216 present distribution records of Dipus sagitta and seven environmental variables, this article simulates the potential distribution of Dipus sagitta during the Last Glacial Maximum, the mid-Holocene, the present and the future (2070s, RCP4.5, RCP8.5). This study also analyzes the geographic changes of the population distribution and evaluates the importance of climate factors by integrating contribution rate, replacement importance value and the jackknife test using the MaxEnt model. In this study, we opted to assess the predictive capabilities of our model using the receiver operating characteristic (ROC) and partial receiver operating characteristic (pROC) metrics. The findings indicate that the AUC value exceeds 0.9 and the AUC ratio is greater than 1, indicating superior predictive performance by the model. The results showed that the main climatic factors affecting the distribution of the three-toed jerboa were precipitation in the coldest quarter, temperature seasonality (standard deviation), and mean annual temperature. Under the two warming scenarios of the mid-Holocene and the future, there were differences in the changes in the distribution area of the three-toed jerboa. During the mid-Holocene, the suitable distribution area of the three-toed jerboa expanded, with a 93.91% increase in the rate of change compared to the Last Glacial Maximum. The size of the three-toed jerboa's habitat decreases under both future climate scenarios. Compared to the current period, under the RCP4.5 emission scenario, the change rate is -2.96%, and under the RCP8.5 emission scenario, the change rate is -7.41%. This indicates a trend of contraction in the south and expansion in the north. It is important to assess changes in the geographic population of Dipus sagitta due to climate change to formulate population control strategies of these harmful rodents and to prevent and control the long-distance transmission of zoonotic diseases.


Subject(s)
Climate Change , Ecosystem , Animals , Humans , Temperature , Rodentia , Zoonoses/epidemiology
19.
Article in English | MEDLINE | ID: mdl-38267387

ABSTRACT

Sarcopenic obesity (SO) is an age-related disease characterized by the coexistence of excessive adiposity and low muscle mass or function. Although obesity and sarcopenia are heritable conditions, the genetic determinants of SO have not been fully understood. We conducted a large-scale exome-wide association analysis of SO in a sequenced sample of 2 887 cases and 113 284 controls and an imputed sample of 4 003 cases and 161 990 controls in the UK Biobank cohort. Single-variant association analysis identified one locus 1q41 (lead SNP rs1417066, LYPLAL1-AS1, odds ratio [OR] = 1.15, 95% confidence interval [CI] = [1.11-1.19], p = 1.75 × 10-14) that was significantly associated with SO at the exome-wide significance level (p < 1 × 10-8). Colocalization analysis in the Genotype-Tissue Expression expression quantitative trait locus database showed that LYPLAL1-AS1 was colocalized with SO in multiple musculoskeletal-related tissues. Gene-based burden test of rare loss-of-function variants identified 5 genes at the gene-wise significance level (p < 4.3 × 10-6): PDE3B (OR = 2.48, p = 1.10 × 10-6), MYOZ3 (OR = 25.49, p = 1.41 × 10-7), SLC15A3 (OR = 4.75, p = 6.82 × 10-7), RNF130 (OR = 25.83, p = 4.07 × 10-6), and TNK2 (OR = 4.25, p = 8.75 × 10-8). Overall, our study uncovered the genetic effects of both common and rare variants on SO susceptibility, expanded existing knowledge of the genetic architecture of SO, and improved understanding of the genetic mechanisms underlying SO.


Subject(s)
Sarcopenia , Humans , Sarcopenia/genetics , Genetic Predisposition to Disease , Exome/genetics , Genome-Wide Association Study , Obesity/genetics , Polymorphism, Single Nucleotide , Protein-Tyrosine Kinases/genetics
20.
Nat Commun ; 15(1): 891, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291026

ABSTRACT

Procaspase 9 is the initiator caspase for apoptosis, but how its levels and activities are maintained remains unclear. The gigantic Inhibitor-of-Apoptosis Protein BIRC6/BRUCE/Apollon inhibits both apoptosis and autophagy by promoting ubiquitylation of proapoptotic factors and the key autophagic protein LC3, respectively. Here we show that BIRC6 forms an anti-parallel U-shaped dimer with multiple previously unannotated domains, including a ubiquitin-like domain, and the proapoptotic factor Smac/DIABLO binds BIRC6 in the central cavity. Notably, Smac outcompetes the effector caspase 3 and the pro-apoptotic protease HtrA2, but not procaspase 9, for binding BIRC6 in cells. BIRC6 also binds LC3 through its LC3-interacting region, probably following dimer disruption of this BIRC6 region. Mutation at LC3 ubiquitylation site promotes autophagy and autophagic degradation of BIRC6. Moreover, induction of autophagy promotes autophagic degradation of BIRC6 and caspase 9, but not of other effector caspases. These results are important to understand how the balance between apoptosis and autophagy is regulated under pathophysiological conditions.


Subject(s)
Apoptosis , Inhibitor of Apoptosis Proteins , Apoptosis/genetics , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Caspases/metabolism , Autophagy/genetics , Ubiquitination , Mitochondrial Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...