Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(8): 6147-6161, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38372229

ABSTRACT

Regulating folding/unfolding of gene promoter G-quadruplexes (G4s) is important for understanding the topological changes in genomic DNAs and the biological effects of such changes on important cellular events. Although many G4-stabilizing ligands have been screened out, effective G4-destabilizing ligands are extremely rare, posing a great challenge for illustrating how G4 destabilization affects gene function in living cells under stress, a long-standing question in neuroscience. Herein, we report a distinct methodology able to destabilize gene promoter G4s in ischemia-stressed neural cells by mitigating the ischemia-induced accumulation of intracellular K+ with an artificial membrane-spanning DNA framework channel (DFC). We also show that ischemia-triggered K+ influx is positively correlated to anomalous stabilization of promoter G4s and downregulation of Bcl-2, an antiapoptotic gene with neuroprotective effects against ischemic injury. Intriguingly, the DFC enables rapid transmembrane transport of excessive K+ mediated by the internal G4 filter, leading to the destabilization of endogenous promoter G4 in Bcl-2 and subsequent turnover of gene expression at both transcription and translation levels under ischemia. Consequently, this work enriches our understanding of the biological roles of endogenous G4s and may offer important clues to study the cellular behaviors in response to stress.


Subject(s)
G-Quadruplexes , DNA/genetics , Promoter Regions, Genetic , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
2.
J Cancer ; 14(13): 2431-2442, 2023.
Article in English | MEDLINE | ID: mdl-37670965

ABSTRACT

Background: Cyclin F (CCNF) represents a pivotal constituent within the family of cell cycle proteins, which also belongs to the F-box protein family and acts as a critical regulatory factor in cell cycle transition. Its heightened expression has been consistently identified across various cancer types, including breast, pancreatic, and colorectal cancer. Nonetheless, a comprehensive exploration of CCNF's involvement in pan-cancer remains lacking. Methods: This study collected transcriptomic data and clinical information from several databases, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and BioGPS detabase. Employing bioinformatics methods, we investigated the potential oncogenic role of CCNF, utilizing various databases such as cBioPortal, Human Protein Atlas (HPA), TIMER2, UALCAN, GEPIA, GSCALite, and CTD detabase. These analyses focused on exploring CCNF expression, prognosis, gene mutations, immune cell infiltration, DNA methylation levels, and targeted chemical drugs across different tumor types. Additionally, we obtained CCNF-related genes from GeneMANIA and GEPIA databases and conducted GO and KEGG enrichment analyses to gain deeper insights into the biological processes associated with CCNF. Furthermore, we validated the differential expression of CCNF in normal human breast cancer and breast cancer cell lines using experimental verification. Results: CCNF exhibited upregulation in the majority of cancer types, demonstrating early diagnostic potential in 15 cancers and prognostic implications for adverse outcomes across numerous malignancies. Furthermore, CCNF was found to be linked with markers of the tumor immune microenvironment in various cancers. Additionally, CCNF expression influenced genetic alterations in pan-cancer. Enrichment analysis revealed that CCNF primarily participates in crucial biological pathways such as the cell cycle, p53 signaling pathway, and cellular senescence pathways. RT-qpcr and WB assays further confirmed that CCNF expression was higher in human cancer cell lines than in normal cell lines. Conclusion: The underlying role and mechanism of CCNF in pan-cancer were elucidated through comprehensive bioinformatics analysis and experimental validation. CCNF holds promise as an invaluable early detection indicator and tumor biomarker, offering potential targets for tumor treatment and prevention.

3.
FASEB J ; 37(10): e23159, 2023 10.
Article in English | MEDLINE | ID: mdl-37650687

ABSTRACT

Sperm-associated antigen 5 (SPAG5) is a mitotic spindle protein that regulates the separation of sister chromatids into daughter cells. Recent studies have discovered its overexpression in various cancers, suggesting its oncogenic characteristics and functions. However, a comprehensive analysis of SPAG5 regarding its diagnostic, prognostic, and immune-related effects across different cancer types is lacking. In this study, we employed bioinformatics methods and integrated multiple public databases to explore the potential oncogenic role of SPAG5. We analyzed its expression, prognosis, related chemicals, enriched pathways, immune infiltration, and its impact on different tumor genetic alterations. The results revealed that SPAG5 is highly expressed in most cancers and significantly correlates with poor patient prognosis. Additionally, SPAG5 expression showed potential for early cancer diagnosis in 15 different cancer types. In terms of tumor immunity, high expression of SPAG5 was associated with an immunosuppressive tumor microenvironment and immune therapy efficacy indicators. SPAG5 expression exhibited a negative correlation with most immune cell infiltrates but demonstrated a significant positive correlation with Th2 cells and MDSC cells. Multicolor fluorescence immunohistochemistry demonstrated that SPAG5 activates immune cell populations within tumors, indicating its significant role in the tumor microenvironment. Enrichment analysis indicated that SPAG5-related genes are mainly involved in cell cycle, cellular senescence, P53 signaling pathway, and FoxO signaling pathway. Furthermore, we confirmed the high expression of SPAG5 in cancer cells and observed that its knockdown upregulated the expression of the p53 protein. In conclusion, SPAG5 holds value as a diagnostic, prognostic, and immune biomarker in various cancers and may provide a novel target for tumor immunotherapy.


Subject(s)
Cell Cycle Proteins , Neoplasms , Tumor Suppressor Protein p53 , Humans , Cell Cycle , Neoplasms/diagnosis , Neoplasms/genetics , Prognosis , Tumor Microenvironment
4.
Cell Death Dis ; 14(8): 533, 2023 08 19.
Article in English | MEDLINE | ID: mdl-37598210

ABSTRACT

Disrupting protein-protein interactions (PPIs) has emerged as a promising strategy for cancer drug development. Interfering peptides disrupting PPIs can be rationally designed based on the structures of natural sequences mediating these interactions. Transcription factor FOXM1 overexpresses in multiple cancers and is considered an effective target for cancer therapeutic drug development. Using a rational design approach, we have generated a peptide library from the FOXM1 C-terminal sequence and screened FOXM1-binding peptides. Combining FOXM1 binding and cell inhibitory results, we have obtained a FOXM1-targeting interfering peptide M1-20 that is optimized from the natural parent peptide to the D-retro-inverso peptide. With improved stability characteristics, M1-20 inhibits proliferation and migration, and induces apoptosis of cancer cells. Mechanistically, M1-20 inhibits FOXM1 transcriptional activities by disrupting its interaction between the MuvB complex and the transcriptional co-activator CBP. These are consistent with the results that M1-20 suppresses cancer progression and metastasis without noticeable toxic and side effects in wild-type mice. These findings reveal that M1-20 has the potential to be developed as an anti-cancer drug candidate targeting FOXM1.


Subject(s)
Neoplasms , Animals , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Peptides/pharmacology , Adjuvants, Immunologic , Apoptosis , Drug Delivery Systems , Transcription Factors
5.
Cell Biosci ; 13(1): 114, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37344857

ABSTRACT

BACKGROUND: Transcription factor FOXM1 is a potential target for anti-cancer drug development. An interfering peptide M1-21, targeting FOXM1 and FOXM1-interacting proteins, is developed and its anti-cancer efficacy is evaluated. METHODS: FOXM1 C-terminus-binding peptides are screened by in silico protocols from the peptide library of FOXM1 (1-138aa) and confirmed by cellular experiments. The selected peptide is synthesized into its D-retro-inverso (DRI) form by fusing a TAT cell-penetrating sequence. Anti-cancer activities are evaluated in vitro and in vivo with tumor-grafted nude mice, spontaneous breast cancer mice, and wild-type metastasis-tracing mice. Anti-cancer mechanisms are analyzed. Distribution and safety profiles in mice are evaluated. RESULTS: With improved stability and cell inhibitory activity compared to the parent peptide, M1-21 binds to multiple regions of FOXM1 and interferes with protein-protein interactions between FOXM1 and its various known partner proteins, including PLK1, LIN9 and B-MYB of the MuvB complex, and ß-catenin. Consequently, M1-21 inhibits FOXM1-related transcriptional activities and FOXM1-mediated nuclear importation of ß-catenin and ß-catenin transcriptional activities. M1-21 inhibits multiple types of cancer (20 µM in vitro or 30 mg/kg in vivo) by preventing proliferation, migration, and WNT signaling. Distribution and safety profiles of M1-21 are favorable (broad distribution and > 15 h stability in mice) and the tested non-severely toxic dose reaches 200 mg/kg in mice. M1-21 also has low hemolytic toxicity and immunogenicity in mice. CONCLUSIONS: M1-21 is a promising interfering peptide targeting FOXM1 for the development of anti-cancer drugs.

6.
Theranostics ; 9(10): 2882-2896, 2019.
Article in English | MEDLINE | ID: mdl-31244930

ABSTRACT

Transcription factor FOXM1 is involved in stimulating cell proliferation, enhancing DNA damage repair, promoting metastasis of cancer cells, and the inhibition of FOXM1 has been shown to prevent the initiation and progression of multiple cancers and FOXM1 is considered to be an effective target for tumor therapeutic drug development. The N-terminus of FOXM1 has been found to prevent transcriptional activities of FOXM1 and to mediate the interaction between FOXM1 and SMAD3. METHODS: A recombinant FOXM1 N-terminal domain (1-138aa) fused with a nine arginine cell-penetrating peptide is produced with an E. coli expression system and named as M1-138. The effects of M1-138 on the proliferation, migration, and tumorigenic ability of cancer cells are analyzed in vitro with cell counting, transwell assays, and colony formation assays. Electrophoretic mobility shift assays (EMSAs) and Luciferase activity assays are used to test the DNA binding ability and transcriptional activity of transcription factors. The levels of mRNAs and proteins are measured by quantitative-PCR, Western blotting or Immunohistochemistry. The interactions among proteins are analyzed with Pull-down and Co-immunoprecipitation (Co-IP) assays. The nude mouse engrafted tumor models are used to test the inhibitory effects of M1-138 in vivo. RESULTS: M1-138 diminishes the proliferation and migration abilities of cancer cells through binding to FOXM1 and FOXM1-interacting factor SMAD3, and consequently attenuating FOXM1 transcriptional activities from both direct and indirect FOXM1-promoter binding mechanisms and interfering with the interaction between FOXM1 and SMAD3. Treatment of M1-138 prevents tumorigenicity of cancer cells and inhibits tumor growth in nude mouse xenograft models with no obvious signs of toxicity. CONCLUSION: M1-138 is a promising drug candidate for the development of anti-cancer therapeutics targeting FOXM1 and SMAD3.


Subject(s)
Antineoplastic Agents/metabolism , Cell-Penetrating Peptides/metabolism , Forkhead Box Protein M1/antagonists & inhibitors , Forkhead Box Protein M1/metabolism , Neoplasms/drug therapy , Recombinant Fusion Proteins/metabolism , Smad3 Protein/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell-Penetrating Peptides/genetics , Disease Models, Animal , Gene Expression Profiling , Mice, Inbred BALB C , Mice, Nude , Neoplasm Transplantation , Recombinant Fusion Proteins/genetics , Transplantation, Heterologous , Treatment Outcome , Tumor Stem Cell Assay
SELECTION OF CITATIONS
SEARCH DETAIL
...