Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 16942, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043787

ABSTRACT

Quantum computing, with its superior computational capabilities compared to classical approaches, holds the potential to revolutionize numerous scientific domains, including pharmaceuticals. However, the application of quantum computing for drug discovery has primarily been limited to proof-of-concept studies, which often fail to capture the intricacies of real-world drug development challenges. In this study, we diverge from conventional investigations by developing a hybrid quantum computing pipeline tailored to address genuine drug design problems. Our approach underscores the application of quantum computation in drug discovery and propels it towards more scalable system. We specifically construct our versatile quantum computing pipeline to address two critical tasks in drug discovery: the precise determination of Gibbs free energy profiles for prodrug activation involving covalent bond cleavage, and the accurate simulation of covalent bond interactions. This work serves as a pioneering effort in benchmarking quantum computing against veritable scenarios encountered in drug design, especially the covalent bonding issue present in both of the case studies, thereby transitioning from theoretical models to tangible applications. Our results demonstrate the potential of a quantum computing pipeline for integration into real world drug design workflows.


Subject(s)
Drug Discovery , Quantum Theory , Drug Discovery/methods , Drug Design/methods , Prodrugs/chemistry , Thermodynamics
2.
Nat Commun ; 15(1): 3045, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589424

ABSTRACT

Parity detection is essential in quantum error correction. Error syndromes coded in parity are detected routinely by sequential CNOT gates. Here, different from the standard CNOT-gate based scheme, we propose a reliable joint parity measurement (JPM) scheme inspired by stimulated emission. By controlling the collective behavior between data qubits and syndrome qubit, we realize the parity detection and experimentally implement the weight-2 and weight-4 JPM scheme in a tunable coupling superconducting circuit, which shows comparable performance to the CNOT scheme. Moreover, with the aid of the coupling tunability in quantum system, this scheme can be further utilized for specific joint entangling state preparation (JEP) with high fidelity, such as multiqubit entangled state preparation for non-adjacent qubits. This strategy, combined with the superconducting qubit system with tunable couplers, reveals tremendous potential and applications in the surface code architecture without adding extra circuit elements. Besides, the method we develop here can readily be applied in large-scale quantum computation and quantum simulation.

3.
Nat Commun ; 12(1): 1385, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33654059

ABSTRACT

Multiple ordered states have been observed in unconventional superconductors. Here, we apply scanning tunneling microscopy to probe the intrinsic ordered states in FeSe, the structurally simplest iron-based superconductor. Besides the well-known nematic order along [100] direction, we observe a checkerboard charge order in the iron lattice, which we name a [110] electronic order in FeSe. The [110] electronic order is robust at 77 K, accompanied with the rather weak [100] nematic order. At 4.5 K, The [100] nematic order is enhanced, while the [110] electronic order forms domains with reduced correlation length. In addition, the collective [110] order is gaped around [-40, 40] meV at 4.5 K. The observation of this exotic electronic order may shed new light on the origin of the ordered states in FeSe.

4.
Sci Rep ; 7(1): 8059, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28808301

ABSTRACT

The pseudogap (PG) state and its related intra-unit-cell symmetry breaking remain the focus in the research of cuprate superconductors. Although the nematicity has been studied in Bi2Sr2CaCu2O8+δ, especially underdoped samples, its behavior in other cuprates and different doping regions is still unclear. Here we apply a scanning tunneling microscope to explore an overdoped (Bi, Pb)2Sr2CuO6+δ with a large Fermi surface (FS). The establishment of a nematic order and its real-space distribution is visualized as the energy scale approaches the PG.

SELECTION OF CITATIONS
SEARCH DETAIL
...