Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
J Nanobiotechnology ; 22(1): 308, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825711

ABSTRACT

Research into mRNA vaccines is advancing rapidly, with proven efficacy against coronavirus disease 2019 and promising therapeutic potential against a variety of solid tumors. Adjuvants, critical components of mRNA vaccines, significantly enhance vaccine effectiveness and are integral to numerous mRNA vaccine formulations. However, the development and selection of adjuvant platforms are still in their nascent stages, and the mechanisms of many adjuvants remain poorly understood. Additionally, the immunostimulatory capabilities of certain novel drug delivery systems (DDS) challenge the traditional definition of adjuvants, suggesting that a revision of this concept is necessary. This review offers a comprehensive exploration of the mechanisms and applications of adjuvants and self-adjuvant DDS. It thoroughly addresses existing issues mentioned above and details three main challenges of immune-related adverse event, unclear mechanisms, and unsatisfactory outcomes in old age group in the design and practical application of cancer mRNA vaccine adjuvants. Ultimately, this review proposes three optimization strategies which consists of exploring the mechanisms of adjuvant, optimizing DDS, and improving route of administration to improve effectiveness and application of adjuvants and self-adjuvant DDS.


Subject(s)
Adjuvants, Immunologic , Cancer Vaccines , Nanotechnology , Neoplasms , mRNA Vaccines , Humans , Cancer Vaccines/immunology , Nanotechnology/methods , Neoplasms/therapy , Neoplasms/immunology , Animals , Drug Delivery Systems/methods , COVID-19/prevention & control , Adjuvants, Vaccine , RNA, Messenger/genetics , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology
2.
BMC Med Educ ; 24(1): 531, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741079

ABSTRACT

BACKGROUND: An urgent need exists for innovative surgical video recording techniques in head and neck reconstructive surgeries, particularly in low- and middle-income countries where a surge in surgical procedures necessitates more skilled surgeons. This demand, significantly intensified by the COVID-19 pandemic, highlights the critical role of surgical videos in medical education. We aimed to identify a straightforward, high-quality approach to recording surgical videos at a low economic cost in the operating room, thereby contributing to enhanced patient care. METHODS: The recording was comprised of six head and neck flap harvesting surgeries using GoPro or two types of digital cameras. Data were extracted from the recorded videos and their subsequent editing process. Some of the participants were subsequently interviewed. RESULTS: Both cameras, set at 4 K resolution and 30 frames per second (fps), produced satisfactory results. The GoPro, worn on the surgeon's head, moves in sync with the surgeon, offering a unique first-person perspective of the operation without needing an additional assistant. Though cost-effective and efficient, it lacks a zoom feature essential for close-up views. In contrast, while requiring occasional repositioning, the digital camera captures finer anatomical details due to its superior image quality and zoom capabilities. CONCLUSION: Merging these two systems could significantly advance the field of surgical video recording. This innovation holds promise for enhancing technical communication and bolstering video-based medical education, potentially addressing the global shortage of specialized surgeons.


Subject(s)
COVID-19 , Video Recording , Humans , COVID-19/epidemiology , Plastic Surgery Procedures/education , Surgical Flaps , SARS-CoV-2 , Head/surgery , Neck/surgery
3.
MedComm (2020) ; 5(5): e577, 2024 May.
Article in English | MEDLINE | ID: mdl-38741888

ABSTRACT

The study by Rahim et al., focusing on preoperative immunotherapy, highlights the pivotal role of CD8+ T cells within lymph nodes in response to neoadjuvant immunotherapy, suggesting that preserving lymph node integrity could bolster the treatment's efficacy by activating antitumor T cells. This underlines the importance of lymph node preservation and supports the use of immunotherapy as a neoadjuvant approach in cancer treatment.

4.
Life Sci ; 346: 122635, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615745

ABSTRACT

The signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, resides in the nucleus to regulate genes essential for vital cellular functions, including survival, proliferation, self-renewal, angiogenesis, and immune response. However, continuous STAT3 activation in tumor cells promotes their initiation, progression, and metastasis, rendering STAT3 pathway inhibitors a promising avenue for cancer therapy. Nonetheless, these inhibitors frequently encounter challenges such as cytotoxicity and suboptimal biocompatibility in clinical trials. A viable strategy to mitigate these issues involves delivering STAT3 inhibitors via drug delivery systems (DDSs). This review delineates the regulatory mechanisms of the STAT3 signaling pathway and its association with cancer. It offers a comprehensive overview of the current application of DDSs for anti-STAT3 inhibitors and investigates the role of DDSs in cancer treatment. The conclusion posits that DDSs for anti-STAT3 inhibitors exhibit enhanced efficacy and reduced adverse effects in tumor therapy compared to anti-STAT3 inhibitors alone. This paper aims to provide an outline of the ongoing research and future prospects of DDSs for STAT3 inhibitors. Additionally, it presents our insights on the merits and future outlook of DDSs in cancer treatment.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems , Neoplasms , STAT3 Transcription Factor , Humans , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Neoplasms/drug therapy , Drug Delivery Systems/methods , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Animals , Signal Transduction/drug effects
5.
Sci Rep ; 14(1): 8127, 2024 04 07.
Article in English | MEDLINE | ID: mdl-38584156

ABSTRACT

The traditional lecture-based learning (LBL) method is facing great challenges due to its low efficiency and single proceeding form. We designed a PRI-E learning mode that combined and modified problem-based, case-based, and evidence-based learning with a step-by-step approach. We evaluated the practical learning outcomes of using the PRI-E mode by comparing it with traditional lecture-based learning in oral and maxillofacial oncology education. "PRI-E" consists of the first letters of the English words Passion, Research, Innovation, and Education, and it means "the best Education". This prospective randomized controlled trial included 40 participants. We evenly divided the participants into the PRI-E (n = 20) and LBL group (n = 20) based on the entrance test scores. The same staff group designed and then taught the learning content with different group measures. The evaluation included the final test scores and questionnaire assessments. Without affecting the examination results, the PRI-E teaching method was more satisfactory and popular with participants in terms of ability development and classroom participation. Enacting the PRI-E teaching method required more time, but this did not affect its popularity among the participants. Compared with the LBL learning mode, the PRI-E learning mode was more organized and efficient in oral and maxillofacial oncology education without affecting academic performance. This model has a high degree of satisfaction, which is conducive to training students' comprehensive ability.


Subject(s)
Learning , Problem-Based Learning , Humans , Problem-Based Learning/methods , Prospective Studies , Students , Educational Measurement
6.
J Nanobiotechnology ; 22(1): 135, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553735

ABSTRACT

The deployment of imaging examinations has evolved into a robust approach for the diagnosis of lymph node metastasis (LNM). The advancement of technology, coupled with the introduction of innovative imaging drugs, has led to the incorporation of an increasingly diverse array of imaging techniques into clinical practice. Nonetheless, conventional methods of administering imaging agents persist in presenting certain drawbacks and side effects. The employment of controlled drug delivery systems (DDSs) as a conduit for transporting imaging agents offers a promising solution to ameliorate these limitations intrinsic to metastatic lymph node (LN) imaging, thereby augmenting diagnostic precision. Within the scope of this review, we elucidate the historical context of LN imaging and encapsulate the frequently employed DDSs in conjunction with a variety of imaging techniques, specifically for metastatic LN imaging. Moreover, we engage in a discourse on the conceptualization and practical application of fusing diagnosis and treatment by employing DDSs. Finally, we venture into prospective applications of DDSs in the realm of LNM imaging and share our perspective on the potential trajectory of DDS development.


Subject(s)
Drug Delivery Systems , Lymph Nodes , Humans , Lymphatic Metastasis/pathology , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology
7.
Small ; 20(19): e2308731, 2024 May.
Article in English | MEDLINE | ID: mdl-38327169

ABSTRACT

Immunotherapy has emerged as a potent strategy in cancer treatment, with many approved drugs and modalities in the development stages. Despite its promise, immunotherapy is not without its limitations, including side effects and suboptimal efficacy. Using nanoparticles (NPs) as delivery vehicles to target immunotherapy to lymph nodes (LNs) can improve the efficacy of immunotherapy drugs and reduce side effects in patients. In this context, this paper reviews the development of LN-targeted immunotherapeutic NP strategies, the mechanisms of NP transport during LN targeting, and their related biosafety risks. NP targeting of LNs involves either passive targeting, influenced by NP physical properties, or active targeting, facilitated by affinity ligands on NP surfaces, while alternative methods, such as intranodal injection and high endothelial venule (HEV) targeting, have uncertain clinical applicability and require further research and validation. LN targeting of NPs for immunotherapy can reduce side effects and increase biocompatibility, but risks such as toxicity, organ accumulation, and oxidative stress remain, although strategies such as biodegradable biomacromolecules, polyethylene glycol (PEG) coating, and impurity addition can mitigate these risks. Additionally, this work concludes with a future-oriented discussion, offering critical insights into the field.


Subject(s)
Immunotherapy , Lymph Nodes , Nanoparticles , Neoplasms , Immunotherapy/methods , Humans , Neoplasms/therapy , Neoplasms/immunology , Nanoparticles/chemistry , Animals
8.
Cancer Lett ; 588: 216740, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38423247

ABSTRACT

Lymph node dissection has been a long-standing diagnostic and therapeutic strategy for metastatic cancers. However, questions over myriad related complications and survival outcomes are continuously debated. Immunotherapy, particularly neoadjuvant immunotherapy, has revolutionized the conventional paradigm of cancer treatment, yet has benefited only a fraction of patients. Emerging evidence has unveiled the role of lymph nodes as pivotal responders to immunotherapy, whose absence may contribute to drastic impairment in treatment efficacy, again posing challenges over excessive lymph node dissection. Hence, centering around this theme, we concentrate on the mechanisms of immune activation in lymph nodes and provide an overview of minimally invasive lymph node metastasis diagnosis, current best practices for activating lymph nodes, and the prognostic outcomes of omitting lymph node dissection. In particular, we discuss the potential for future comprehensive cancer treatment with effective activation of immunotherapy driven by lymph node preservation and highlight the challenges ahead to achieve this goal.


Subject(s)
Lymph Node Excision , Lymph Nodes , Humans , Lymph Nodes/pathology , Prognosis , Lymphatic Metastasis/pathology , Immunotherapy
9.
Front Cell Dev Biol ; 11: 1307501, 2023.
Article in English | MEDLINE | ID: mdl-38077997
10.
J Stomatol Oral Maxillofac Surg ; 125(4): 101728, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38070674

ABSTRACT

BACKGROUND AND OBJECTIVES: The resorption of flap's volume can be frequently observed in the transplantation of microvascular free flaps, which could significantly affect postoperative function. Therefore, it's essential to comprehend the postoperative flap volume and the mechanisms behind before making clinical decisions. METHODS: Literature search was conducted from database on PubMed, EMBASE, Cochrane Library, Chinese database and Google Scholar. A random effects model meta-analyses and descriptive systematic review were performed. RESULTS: The search identified 420 articles, of which 9 studies included in meta-analysis and 14 studies included in descriptive systematic review. Postoperative flap volume maintenance rate is used to represent the volume change. The pooled mean postoperative flap volume maintenance rate was 62.82 % for soft tissue flap (95 %CI: 58.83 to 66.82, p = 0.076, I2=56.3 %) and 85.96 % for bone flap (95 %CI: 84.19 to 87.73, p = 0.274, I2=20.4 %). Weight loss, muscle atrophy, and decreased serum albumin levels are risk factors for postoperative volume reduction of soft tissue flaps. The bone resorption rate of bone flaps in women is higher than that in men. CONCLUSION: When designing microvascular free flaps for oral and maxillofacial surgery, soft tissue flaps should consider an anticipated postoperative shrinkage of 37 %, while bone flaps should consider an anticipated postoperative shrinkage of 14 %.

12.
Pharmacol Res ; 198: 106989, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979662

ABSTRACT

Lymph node metastasis (LNM) significantly impacts the prognosis of cancer patients. Despite significant advancements in diagnostic techniques and treatment modalities, clinical challenges continue to persist in the realm of LNM. These include difficulties in early diagnosis, limited treatment efficacy, and potential side effects and injuries associated with treatment. Nanotheranostics, a field within nanotechnology, seamlessly integrates diagnostic and therapeutic functionalities. Its primary goal is to provide precise and effective disease diagnosis and treatment simultaneously. The development of nanotheranostics for LNM offers a promising solution for the stratified management of patients with LNM and promotes the advancement of personalized medicine. This review introduces the mechanisms of LNM and challenges in its diagnosis and treatment. Furthermore, it demonstrates the advantages and development potential of nanotheranostics, focuses on the challenges nanotheranostics face in its application, and provides an outlook on future trends. We consider nanotheranostics a promising strategy to improve clinical effectiveness and efficiency as well as the prognosis of cancer patients with LNM.


Subject(s)
Lymphoma , Theranostic Nanomedicine , Humans , Lymphatic Metastasis/pathology , Prognosis , Precision Medicine , Retrospective Studies , Lymph Nodes
13.
Transl Oncol ; 38: 101794, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37820473

ABSTRACT

Cancer remains a major health concern globally. Immune checkpoint inhibitors (ICIs) target co-inhibitory immune checkpoint molecules and have received approval for treating malignancies like melanoma and non-small cell lung cancer. While CTLA-4 and PD-1/PD-L1 are extensively researched, additional targets such as LAG-3, TIGIT, TIM-3, and VISTA have also demonstrated effective in cancer therapy. Combination treatments, which pair ICIs with interventions such as radiation or chemotherapy, amplify therapeutic outcomes. However, ICIs can lead to diverse side effects, and their varies across patients and cancers. Hence, identifying predictive biomarkers to guide therapy is essential. Notably, expression levels of molecules like PD-1, CTLA-4, and LAG-3 have been linked to tumor progression and ICI therapy responsiveness. Recent advancements in drug delivery systems (DDSs) further enhance ICI therapy efficacy. This review explores predominant DDSs for ICI delivery, such as hydrogel, microparticle, and nanoparticle, which offer improved therapeutic effects and reduced toxicity. In summary, we discuss the future of immune therapy focusing on co-inhibitory checkpoint molecules, pinpoint challenges, and suggest avenues for developing efficient, safer DDSs for ICI transport.

14.
Biomedicines ; 11(10)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37893092

ABSTRACT

Oral squamous cell carcinoma (OSCC) is a heterogeneous malignancy originating from the oral mucosal epithelium. Detecting novel biomarkers can offer crucial information on disease aggressiveness and expected clinical outcomes for individual patients. SEC61G, an aberrantly expressed gene in various cancers, has been associated with negative clinical outcomes. However, its expression and clinical significance in OSCC is still unclear. In the present study, we investigated the SEC61G expression level in OSCC using bioinformatic and immunohistochemical analyses. Additionally, our findings revealed a significant correlation between SEC61G expression and clinicopathological characteristics, as well as a worse prognosis in OSCC patients. Notably, flow cytometry analysis on patient samples revealed that SEC61G expression was also linked to decreased immune infiltration in OSCC patients. In conclusion, our study provides evidence supporting SEC61G's role as a potential diagnostic, prognostic, and therapeutic marker in OSCC.

15.
J Oral Pathol Med ; 52(8): 766-776, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37549038

ABSTRACT

BACKGROUND: Salivary gland pleomorphic adenoma (SPA) is a common neoplasm of salivary glands that displays remarkable histological diversity. Previous studies have demonstrated the involvement of gene rearrangements and cytoskeleton-remodeling-related myoepithelial cells in SPA tumorigenesis. Cytoskeleton remodeling is necessary for epithelial-mesenchymal transition (EMT), a key process in tumor progression. However, the heterogeneity of tumor cells and cytoskeleton remodeling in SPA has not been extensively investigated. METHODS: An analysis of single-cell RNA sequencing (scRNA-seq) was performed on 27 810 cells from two donors with SPA. Bioinformatic tools were used to assess differentially expressed genes, cell trajectories, and intercellular communications. Immunohistochemistry and double immunofluorescence staining were used to demonstrate FOXC1 and MYLK expression in SPA tissues. RESULTS: Our analysis revealed five distinct cell subtypes within the tumor cells of SPA, indicating a high level of intra-lesional heterogeneity. Cytoskeleton-remodeling-related genes were highly enriched in subtype 3 of the tumor cells, which showed a close interaction with mesenchymal cells. We found that tumoral FOXC1 expression was closely related to MYLK expression in the tumor cells of SPA. CONCLUSION: Tumor cells enriched with cytoskeleton-remodeling-related genes play a crucial role in SPA development, and FOXC1 may partially regulate this process.


Subject(s)
Adenoma, Pleomorphic , Salivary Gland Neoplasms , Humans , Adenoma, Pleomorphic/pathology , Salivary Gland Neoplasms/pathology , Salivary Glands/metabolism , Sequence Analysis, RNA
16.
Semin Cancer Biol ; 95: 52-74, 2023 10.
Article in English | MEDLINE | ID: mdl-37473825

ABSTRACT

Head and neck tumors (HNTs) constitute a multifaceted ensemble of pathologies that primarily involve regions such as the oral cavity, pharynx, and nasal cavity. The intricate anatomical structure of these regions poses considerable challenges to efficacious treatment strategies. Despite the availability of myriad treatment modalities, the overall therapeutic efficacy for HNTs continues to remain subdued. In recent years, the deployment of artificial intelligence (AI) in healthcare practices has garnered noteworthy attention. AI modalities, inclusive of machine learning (ML), neural networks (NNs), and deep learning (DL), when amalgamated into the holistic management of HNTs, promise to augment the precision, safety, and efficacy of treatment regimens. The integration of AI within HNT management is intricately intertwined with domains such as medical imaging, bioinformatics, and medical robotics. This article intends to scrutinize the cutting-edge advancements and prospective applications of AI in the realm of HNTs, elucidating AI's indispensable role in prevention, diagnosis, treatment, prognostication, research, and inter-sectoral integration. The overarching objective is to stimulate scholarly discourse and invigorate insights among medical practitioners and researchers to propel further exploration, thereby facilitating superior therapeutic alternatives for patients.


Subject(s)
Artificial Intelligence , Head and Neck Neoplasms , Humans , Machine Learning , Neural Networks, Computer , Head and Neck Neoplasms/diagnosis , Head and Neck Neoplasms/therapy , Diagnostic Imaging/methods
17.
Int Rev Cell Mol Biol ; 378: 233-264, 2023.
Article in English | MEDLINE | ID: mdl-37438019

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a group of heterogenous immature myeloid cells with potent immune suppressive properties that not only constrain anti-tumor immune activation and functions, promote tumor progression, but also contribute to treatment resistance and tumor relapse. Targeting MDSCs may be a promising new cancer treatment method, but there is still a problem of low treatment efficiency. Combined application with radiotherapy may be a potential method to solve this problem. Drug delivery systems (DDSs) provide more efficient targeted drug delivery capability and can reduce the toxicity and side effects of drugs. Recent advance in DDSs targeting development, recruitment, differentiation, and elimination of MDSCs have shown promising effect in reversing immune inhibition and in overcoming radiotherapy resistance. In this review, we systematically summarized DDSs applied to target MDSCs for the first time, and classified and discussed it according to its different mechanisms of action. In addition, this paper also reviewed the biological characteristics of MDSCs and their role in the initiation, progression, and metastasis of cancer. Moreover, this review also summarizes the role of DDSs targeting MDSCs in radiosensitization. Finally, the future development of DDSs targeting MDSCs is also prospected.


Subject(s)
Myeloid-Derived Suppressor Cells , Cell Differentiation , Drug Delivery Systems
19.
J Clin Med ; 12(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36983174

ABSTRACT

Surgery with the assistance of conventional radiotherapy, chemotherapy and immunotherapy is the basis for head and neck squamous cell carcinoma (HNSCC) treatment. However, with these treatment modalities, the recurrence and metastasis of tumors remain at a high level. Increasingly, the evidence indicates an excellent anti-tumor effect of chimeric antigen receptor T (CAR-T) cells in hematological malignancy treatment, and this novel immunotherapy has attracted researchers' attention in HNSCC treatment. Although several clinical trials have been conducted, the weak anti-tumor effect and the side effects of CAR-T cell therapy against HNSCC are barriers to clinical translation. The limited choices of targeting proteins, the barriers of CAR-T cell infiltration into targeted tumors and short survival time in vivo should be solved. In this review, we introduce barriers of CAR-T cell therapy in HNSCC. The limitations and current promising strategies to overcome barriers in solid tumors, as well as the applications for HNSCC treatment, are covered. The perspectives of CAR-T cell therapy in future HNSCC treatment are also discussed.

20.
Int Rev Cell Mol Biol ; 375: 33-92, 2023.
Article in English | MEDLINE | ID: mdl-36967154

ABSTRACT

Myeloid-derived suppressor cells (MDSCs), which originated from hematopoietic stem cells, are heterogeneous population of cells that have different differentiation patterns and widely presented in tumor microenvironment. For tumor research, myeloid suppressor cells have received extensive attention since their discovery due to their specific immunosuppressive properties, and the mechanisms of immunosuppression and therapeutic approaches for MDSCs have been investigated in a variety of different types of malignancies. To improve the efficacy of treatment for head and neck squamous cell carcinoma (HNSCC), a disease with a high occurrence, immunotherapy has gradually emerged in after traditional surgery and subsequent radiotherapy and chemotherapy, and has made some progress. In this review, we introduced the mechanisms on the development, differentiation, and elimination of MDSCs and provided a detailed overview of the mechanisms behind the immunosuppressive properties of MDSCs. We summarized the recent researches on MDSCs in HNSCC, especially for targeting-MDSCs therapy and combination with other types of therapy such as immune checkpoint blockade (ICB). Furthermore, we looked at drug delivery patterns and collected the current diverse drug delivery systems for the improvement that contributed to therapy against MDSCs in HNSCC. Most importantly, we made possible outlooks for the future research priorities, which provide a basis for further study on the clinical significance and therapeutic value of MDSCs in HNSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Myeloid-Derived Suppressor Cells , Humans , Squamous Cell Carcinoma of Head and Neck/therapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/pathology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Myeloid Cells/metabolism , Myeloid Cells/pathology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...