Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 11: 1067, 2020.
Article in English | MEDLINE | ID: mdl-32582064

ABSTRACT

Porcine circovirus type 3 (PCV3), which currently lacks effective preventive measures, has caused tremendous economic losses to the pig husbandry. Obtaining the strain of PCV3 is the key to preparing related vaccines and developing corresponding antiviral drugs. In this study, according to the linear sequence of PCV3 DNA published on GenBank, the sequence was rearranged with SnapGene gene-editing software, and after rearrangement, the HindIII restriction endonuclease site was added to the end of the linear DNA, so that both ends have the same restriction endonuclease site. On this basis, the rearranged linear DNA is obtained by gene synthesis, PCR amplification, DNA purification, etc., and is digested and connected in vitro to obtain cyclized DNA. PCV3 infectious clones were obtained by transfecting 3D4/21 cell lines. The obtained PCV3 was identified by PCR, Western blotting, and indirect immunofluorescence tests. The results showed that this study successfully obtained the strain of PCV3 in vitro. To further evaluate the pathogenicity of the obtained PCV3 infectious clones, this study established an animal model of Kunming mice infected with PCV3. The results of RT-PCR, Western blotting and immunohistochemistry showed that PCV3 can infect myocardium and alveoli of Kunming mice, but no PCV3 was detected in other tissues. The above studies indicate that PCV3 circular DNA can be used to construct PCV3 infectious clones. This research will provide a new method for the construction of circular DNA viruses and lay the foundation for the research and pathogenesis of PCV3 vaccine.

2.
Protein Expr Purif ; 162: 32-37, 2019 10.
Article in English | MEDLINE | ID: mdl-31100416

ABSTRACT

In this study, canine IFNγ was fused by a flexible linker with canine serum albumin to construct the fusion protein IFNγ-CSA for the purpose to design a long-acting canine IFNγ. The fusion protein was successfully expressed in baculovirus-infected Sf9 insect cells and was purified by salting-out and ion exchange chromatography. The IFNγ-CSA fusion possessed potent anti-viral assay against vesicular stomatitis virus in cultured cells. IFNγ-CSA was also stable at 37 °C up to 72 h compared with 8 h for IFNγ alone. In vivo pharmacokinetics demonstrated a significantly longer half-life for IFNγ-CSA (15.42 h) than for canine reIFNγ (1.51 h) in KM mice. These results indicate that IFNγ-CSA expression in the baculovirus system was successful and provide a promising long-acting cytokine for veterinary clinical applications.


Subject(s)
Baculoviridae/genetics , Interferon-gamma/genetics , Serum Albumin/genetics , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacokinetics , Baculoviridae/metabolism , Dogs , Female , Gene Expression , Interferon-gamma/metabolism , Interferon-gamma/pharmacokinetics , Mice , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacokinetics , Serum Albumin/metabolism , Serum Albumin/pharmacokinetics , Sf9 Cells , Spodoptera , Vesicular stomatitis Indiana virus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...