Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(25): 32402-32410, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38875019

ABSTRACT

Optical signals with distinctive properties, such as contactless, fast response, and high identification, are harnessed to realize advanced anti-counterfeiting. However, the simultaneous attainment of multi-color, -temporal, and -modal luminescence performance remains a compelling and imperative pursuit. In our work, a temperature/photon-responded dynamic self-activated luminescence originating from nonstoichiometric Zn2GeO4 is developed with the modulation of intrinsic defects. The increased concentration of oxygen vacancies (VO••) contributes to an enhanced recombination of ZnGe″-VO••, ultimately improving the self-activated luminescence performance. Additionally, the photoluminescence (PL) color of the representative Zn2.2GeO4 sample changes from green to blue-white with the increased ultraviolet (UV) irradiation time. Concurrently, the emission color undergoes a variation from blue to green as the ambient temperature raises from 280 to 420 K. Remarkably, green long persistent luminescence (LPL) and photostimulated luminescence (PSL) behaviors are observed. Herein, this study elucidates a sophisticated anti-counterfeiting approach grounded in the dynamic luminescent attributes of nonstoichiometric Zn2GeO4, presenting a promising frontier for the evolution of anti-counterfeiting technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...