Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 9(10): e0004148, 2015.
Article in English | MEDLINE | ID: mdl-26451839

ABSTRACT

BACKGROUND: Chronic Chagas cardiomyopathy caused by Trypanosoma cruzi is the result of a pathologic process starting during the acute phase of parasite infection. Among different factors, the specific recognition of glycan structures by glycan-binding proteins from the parasite or from the mammalian host cells may play a critical role in the evolution of the infection. METHODOLOGY AND PRINCIPAL FINDINGS: Here we investigated the contribution of galectin-1 (Gal-1), an endogenous glycan-binding protein abundantly expressed in human and mouse heart, to the pathophysiology of T. cruzi infection, particularly in the context of cardiac pathology. We found that exposure of HL-1 cardiac cells to Gal-1 reduced the percentage of infection by two different T. cruzi strains, Tulahuén (TcVI) and Brazil (TcI). In addition, Gal-1 prevented exposure of phosphatidylserine and early events in the apoptotic program by parasite infection on HL-1 cells. These effects were not mediated by direct interaction with the parasite surface, suggesting that Gal-1 may act through binding to host cells. Moreover, we also observed that T. cruzi infection altered the glycophenotype of cardiac cells, reducing binding of exogenous Gal-1 to the cell surface. Consistent with these data, Gal-1 deficient (Lgals1-/-) mice showed increased parasitemia, reduced signs of inflammation in heart and skeletal muscle tissues, and lower survival rates as compared to wild-type (WT) mice in response to intraperitoneal infection with T. cruzi Tulahuén strain. CONCLUSION/SIGNIFICANCE: Our results indicate that Gal-1 modulates T. cruzi infection of cardiac cells, highlighting the relevance of galectins and their ligands as regulators of host-parasite interactions.


Subject(s)
Chagas Disease/immunology , Chagas Disease/pathology , Galectin 1/metabolism , Host-Parasite Interactions , Myocytes, Cardiac/physiology , Myocytes, Cardiac/parasitology , Trypanosoma cruzi/immunology , Adult , Aged , Animals , Brazil , Cells, Cultured , Chagas Disease/parasitology , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Knockout , Middle Aged , Parasitemia , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...