Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Int J Mol Sci ; 24(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37569250

ABSTRACT

Cyclophilins (CyPs) are a family of enzymes involved in protein folding. Trypanosoma cruzi, the causative agent of Chagas disease, has a 19-kDa cyclophilin, TcCyP19, that was found to be secreted in parasite stages of the CL Brener clone and recognized by sera from T. cruzi-infected mice and patients. The levels of specific antibodies against TcCyP19 in T. cruzi-infected mice and subjects before and after drug treatment were measured by an in-house enzyme linked immunosorbent assay (ELISA). Mice in the acute and chronic phase of infection, with successful trypanocidal treatments, showed significantly lower anti-TcCyP19 antibody levels than untreated mice. In children and adults chronically infected with T. cruzi, a significant decrease in the anti-TcCyP19 titers was observed after 12 months of etiological treatment. This decrease was maintained in adult chronic patients followed-up 30-38 months post-treatment. These results encourage further studies on TcCyP19 as an early biomarker of trypanocidal treatment efficiency.

2.
Acta Trop ; 242: 106920, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37028584

ABSTRACT

Benznidazole and nifurtimox are the drugs currently used for the treatment of Chagas disease, however its side effects may affect patient adherence. In the search for new alternative therapies, we previously identified isotretinoin (ISO), an FDA-approved drug widely used for the treatment of severe acne through a drug repurposing strategy. ISO shows a strong activity against Trypanosoma cruzi parasites in the nanomolar range, and its mechanism of action is through the inhibition of T. cruzi polyamine and amino acid transporters from the Amino Acid/Auxin Permeases (AAAP) family. In this work, a murine model of chronic Chagas disease (C57BL/6 J mice), intraperitoneally infected with T. cruzi Nicaragua isolate (DTU TcI), were treated with different oral administrations of ISO: daily doses of 5 mg/kg/day for 30 days and weekly doses of 10 mg/kg during 13 weeks. The efficacy of the treatments was evaluated by monitoring blood parasitemia by qPCR, anti-T. cruzi antibodies by ELISA, and cardiac abnormalities by electrocardiography. No parasites were detected in blood after any of the ISO treatments. The electrocardiographic study of the untreated chronic mice showed a significant decrease in heart rate, while in the treated mice this negative chronotropic effect was not observed. Atrioventricular nodal conduction time in untreated mice was significantly longer than in treated animals. Mice treated even with ISO 10 mg/kg dose every 7 days, showed a significant reduction in anti-T. cruzi IgG levels. In conclusion, the intermittent administration of ISO 10 mg/kg would improve myocardial compromise during the chronic stage.


Subject(s)
Chagas Disease , Nitroimidazoles , Trypanocidal Agents , Trypanosoma cruzi , Animals , Mice , Isotretinoin/pharmacology , Isotretinoin/therapeutic use , Pharmaceutical Preparations , Disease Models, Animal , Trypanocidal Agents/therapeutic use , Mice, Inbred C57BL , Chagas Disease/parasitology , Nitroimidazoles/therapeutic use
3.
Parasit Vectors ; 15(1): 37, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35073983

ABSTRACT

BACKGROUND: The distribution of parasite load across hosts may modify the transmission dynamics of infectious diseases. Chagas disease is caused by a multi-host protozoan, Trypanosoma cruzi, but the association between host parasitemia and infectiousness to the vector has not been studied in sylvatic mammalian hosts. We quantified T. cruzi parasite load in sylvatic mammals, modeled the association of the parasite load with infectiousness to the vector and compared these results with previous ones for local domestic hosts. METHODS: The bloodstream parasite load in each of 28 naturally infected sylvatic mammals from six species captured in northern Argentina was assessed by quantitative PCR, and its association with infectiousness to the triatomine Triatoma infestans was evaluated, as determined by natural or artificial xenodiagnosis. These results were compared with our previous results for 88 humans, 70 dogs and 13 cats, and the degree of parasite over-dispersion was quantified and non-linear models fitted to data on host infectiousness and bloodstream parasite load. RESULTS: The parasite loads of Didelphis albiventris (white-eared opossum) and Dasypus novemcinctus (nine-banded armadillo) were directly and significantly associated with infectiousness of the host and were up to 190-fold higher than those in domestic hosts. Parasite load was aggregated across host species, as measured by the negative binomial parameter, k, and found to be substantially higher in white-eared opossums, cats, dogs and nine-banded armadillos (range: k = 0.3-0.5) than in humans (k = 5.1). The distribution of bloodstream parasite load closely followed the "80-20 rule" in every host species examined. However, the 20% of human hosts, domestic mammals or sylvatic mammals exhibiting the highest parasite load accounted for 49, 25 and 33% of the infected triatomines, respectively. CONCLUSIONS: Our results support the use of bloodstream parasite load as a proxy of reservoir host competence and individual transmissibility. The over-dispersed distribution of T. cruzi bloodstream load implies the existence of a fraction of highly infectious hosts that could be targeted to improve vector-borne transmission control efforts toward interruption transmission. Combined strategies that decrease the parasitemia and/or host-vector contact with these hosts would disproportionally contribute to T. cruzi transmission control.


Subject(s)
Chagas Disease/transmission , Mammals/parasitology , Triatoma/parasitology , Trypanosoma cruzi , Animals , Animals, Wild/parasitology , Argentina/epidemiology , Armadillos/parasitology , Cats , Chagas Disease/diagnosis , Chagas Disease/prevention & control , Didelphis/parasitology , Disease Reservoirs/parasitology , Disease Vectors , Dogs , Forests , Genes, Protozoan , Humans , Insect Vectors/parasitology , Parasite Load/statistics & numerical data , Parasitemia/parasitology , Real-Time Polymerase Chain Reaction , Trypanosoma cruzi/genetics , Trypanosoma cruzi/isolation & purification , Vector Borne Diseases/diagnosis , Vector Borne Diseases/prevention & control , Vector Borne Diseases/transmission , Xenodiagnosis
4.
EBioMedicine ; 69: 103450, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34186488

ABSTRACT

BACKGROUND: Current algorithm for Congenital Chagas Disease (cCD) diagnosis is unsatisfactory due to low sensitivity of the parasitological methods. Moreover, loss to follow-up precludes final serodiagnosis after nine months of life in many cases. A duplex TaqMan qPCR kit for Trypanosoma cruzi DNA amplification was prospectively evaluated in umbilical cord (UCB) and peripheral venous blood (PVB) of infants born to CD mothers at endemic and non-endemic sites of Argentina. METHODS: We enrolled and followed-up 370 infants; qPCR was compared to gold-standard cCD diagnosis following studies of diagnostic accuracy guidelines. FINDINGS: Fourteen infants (3·78%) had cCD. The qPCR sensitivity and specificity were higher in PVB (72·73%, 99·15% respectively) than in UCB (66·67%, 96·3%). Positive and negative predictive values were 80 and 98·73% and 50 and 98·11% for PVB and UCB, respectively. The Areas under the Curve (AUC) of ROC analysis for qPCR and micromethod (MM) were 0·81 and 0·67 in UCB and 0·86 and 0·68 in PVB, respectively. Parasitic loads ranged from 37·5 to 23,709 parasite equivalents/mL. Discrete typing Unit Tc V was identified in five cCD patients and in six other cCD cases no distinction among Tc II, Tc V or Tc VI was achieved. INTERPRETATION: This first prospective field study demonstrated that qPCR was more sensitive than MM for early cCD detection and more accurate in PVB than in UCB. Its use, as an auxiliary diagnostic tool to MM will provide more accurate records on cCD incidence. FUNDING: FITS SALUD 001-CHAGAS (FONARSEC, MINCyT, Argentina) to the Public-Private Consortium (INGEBI-CONICET, INP-ANLIS MALBRAN and Wiener Laboratories); ERANET-LAC-HD 328 to AGS and PICT 2015-0074 (FONCYT, MinCyT) to AGS and FA.


Subject(s)
Chagas Disease/diagnosis , Real-Time Polymerase Chain Reaction/methods , Adult , Chagas Disease/congenital , Early Diagnosis , Female , Humans , Infant, Newborn , Male , Reagent Kits, Diagnostic/standards , Real-Time Polymerase Chain Reaction/standards , Sensitivity and Specificity
5.
J Antimicrob Chemother ; 76(6): 1580-1592, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33693664

ABSTRACT

BACKGROUND: Interruption of benznidazole therapy due to the appearance of adverse effects, which is presumed to lead to treatment failure, is a major drawback in the treatment of chronic Chagas disease. METHODS: Trypanosoma cruzi-specific humoral and T cell responses, T cell phenotype and parasite load were measured to compare the outcome in 33 subjects with chronic Chagas disease treated with an incomplete benznidazole regimen and 58 subjects treated with the complete regimen, during a median follow-up period of 48 months. RESULTS: Both treatment regimens induced a reduction in the T. cruzi-specific antibody levels and similar rates of treatment failure when evaluated using quantitative PCR. Regardless of the regimen, polyfunctional CD4+ T cells increased in the subjects, with successful treatment outcome defined as a decrease of T. cruzi-specific antibodies. Regardless of the serological outcome, naive and central memory T cells increased after both regimens. A decrease in CD4+ HLA-DR+ T cells was associated with successful treatment in both regimens. The cytokine profiles of subjects with successful treatment showed fewer inflammatory mediators than those of the untreated T. cruzi-infected subjects. High levels of T cells expressing IL-7 receptor and low levels of CD8+ T cells expressing the programmed cell death protein 1 at baseline were associated with successful treatment following benznidazole interruption. CONCLUSIONS: These findings challenge the notion that treatment failure is the sole potential outcome of an incomplete benznidazole regimen and support the need for further assessment of the treatment protocols for chronic Chagas disease.


Subject(s)
Chagas Disease , Nitroimidazoles , Trypanocidal Agents , Trypanosoma cruzi , Chagas Disease/drug therapy , Humans , Nitroimidazoles/therapeutic use , Trypanocidal Agents/therapeutic use
6.
J Infect Dis ; 224(6): 1086-1095, 2021 09 17.
Article in English | MEDLINE | ID: mdl-33528501

ABSTRACT

BACKGROUND: Trypanosoma cruzi, the causative agent of Chagas disease, can be transmitted to the offspring of infected women, which constitutes an epidemiologically significant parasite transmission route in nonendemic areas. It is relevant to evaluate differentially expressed factors in T. cruzi-infected pregnant women as potential markers of Chagas congenital transmission. METHODS: Circulating levels of 12 cytokines and chemokines were measured by enzyme-linked immunosorbent assay or cytometric bead array in T. cruzi-infected and uninfected pregnant women in their second trimester of pregnancy and control groups of T. cruzi-infected and uninfected nonpregnant women. RESULTS: Trypanosoma cruzi-infected women showed a proinflammatory Th1-biased profile, with increased levels of tumor necrosis factor (TNF)-α, interleukin (IL)-12p70, IL-15, and monokine induced by interferon-gamma (MIG). Uninfected pregnant women presented a biased response towards Th2/Th17/Treg profiles, with increased plasma levels of IL-5, IL-6, IL-1ß, IL-17A, and IL-10. Finally, we identified that high parasitemia together with low levels of TNF-α, IL-15, and IL-17, low TNF-α/IL-10 ratio, and high IL-12p70 levels are factors associated with an increased probability of Chagas congenital transmission. CONCLUSIONS: Trypanosoma cruzi-infected pregnant women who did not transmit the infection to their babies exhibited a distinct proinflammatory cytokine profile that might serve as a potential predictive marker of congenital transmission.


Subject(s)
Chagas Disease/immunology , Chagas Disease/transmission , Chemokines/genetics , Cytokines/genetics , Trypanosoma cruzi/immunology , Adult , Antibodies, Protozoan , Antigens, Protozoan , Biomarkers , Chagas Disease/congenital , Chagas Disease/parasitology , Female , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical , Interferon-gamma/blood , Interferon-gamma/genetics , Interleukin-10/genetics , Interleukin-12 , Interleukin-15 , Pregnancy , Tumor Necrosis Factor-alpha
7.
Exp Parasitol ; 220: 108044, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33253715

ABSTRACT

Trypanosoma cruzi is the causative agent of Chagas disease, which is endemic in Latin America and around the world through mother to child transmission. The heart is the organ most frequently affected in the chronic stage of the human infection and depends on mitochondria for the required energy for its activity. Cyclophilins are involved in protein folding and the mitochondrial isoform, Cyclophilin D (CyPD), has a crucial role in the opening of the mitochondrial permeability transition pore. In the present study, we infected CyPD deficient mice, with ablation of the Ppif gene, with T. cruzi parasites and the course of the infection was analyzed. Parasite load, quantified by PCR, was significantly lower in skeletal and cardiac tissues of Ppif-/- mice compared to wild type mice. In vitro cultured cardiomyocytes and macrophages from mice lacking CyPD exhibited lower percentage of infected cells and number of intracellular parasites than those observed for wild type mice. Although histopathological analysis of heart and mRNA of heart cytokines showed differences between T. cruzi-infected mice compared to the uninfected animals, no significant differences were found mice due to the ablation of the Ppif gene. Our results suggest that cells deficient for mitochondrial CyPD, inhibited for the mitochondrial membrane potential collapse, reduces the severity of parasite aggression and spread of cellular infection.


Subject(s)
Chagas Disease/parasitology , Peptidyl-Prolyl Isomerase F/deficiency , Trypanosoma cruzi/physiology , Animals , Cytokines/analysis , Cytokines/genetics , DNA, Protozoan/isolation & purification , Heart/parasitology , Liver/pathology , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/parasitology , Mice , Mice, Inbred C57BL , Muscle, Skeletal/parasitology , Muscle, Skeletal/pathology , Myocardium/pathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/parasitology , Parasite Load , RNA, Messenger/analysis , RNA, Protozoan/analysis , RNA, Protozoan/isolation & purification , Spleen/pathology , Trypanosoma cruzi/genetics
8.
Parasitology ; 148(5): 566-575, 2021 04.
Article in English | MEDLINE | ID: mdl-33298212

ABSTRACT

Chagas disease is a serious parasitic infection caused by Trypanosoma cruzi. Unfortunately, the current chemotherapeutic tools are not enough to combat the infection. The aim of this study was to evaluate the trypanocidal activity of benznidazole-loaded microparticles during the acute phase of Chagas infection in an experimental murine model. Microparticles were prepared by spray-drying using copolymers derived from esters of acrylic and methacrylic acids as carriers. Dissolution efficiency of the formulations was up to 3.80-fold greater than that of raw benznidazole. Stability assay showed no significant difference (P > 0.05) in the loading capacity of microparticles for 3 years. Cell cultures showed no visible morphological changes or destabilization of the cell membrane nor haemolysis was observed in defibrinated human blood after microparticles treatment. Mice with acute lethal infection survived 100% after 30 days of treatment with benznidazole microparticles (50 mg kg-1 day-1). Furthermore, no detectable parasite load measured by quantitative polymerase chain reaction and lower levels of T. cruzi-specific antibodies by enzyme-linked immunosorbent assay were found in those mice. A significant decrease in the inflammation of heart tissue after treatment with these microparticles was observed, in comparison with the inflammatory damage observed in both infected mice treated with raw benznidazole and untreated infected mice. Therefore, these polymeric formulations are an attractive approach to treat Chagas disease.


Subject(s)
Chagas Disease/drug therapy , Nanoparticles/administration & dosage , Nitroimidazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Acute Disease/therapy , Animals , Disease Models, Animal , Female , Mice
9.
Cell Microbiol ; 22(8): e13207, 2020 08.
Article in English | MEDLINE | ID: mdl-32270902

ABSTRACT

To disseminate and colonise tissues in the mammalian host, Trypanosoma cruzi trypomastogotes should cross several biological barriers. How this process occurs or its impact in the outcome of the disease is largely speculative. We examined the in vitro transmigration of trypomastigotes through three-dimensional cultures (spheroids) to understand the tissular dissemination of different T. cruzi strains. Virulent strains were highly invasive: trypomastigotes deeply transmigrate up to 50 µm inside spheroids and were evenly distributed at the spheroid surface. Parasites inside spheroids were systematically observed in the space between cells suggesting a paracellular route of transmigration. On the contrary, poorly virulent strains presented a weak migratory capacity and remained in the external layers of spheroids with a patch-like distribution pattern. The invasiveness-understood as the ability to transmigrate deep into spheroids-was not a transferable feature between strains, neither by soluble or secreted factors nor by co-cultivation of trypomastigotes from invasive and non-invasive strains. Besides, we demonstrated that T. cruzi isolates from children that were born congenitally infected presented a highly migrant phenotype while an isolate from an infected mother (that never transmitted the infection to any of her children) presented significantly less migration. In brief, we demonstrated that in a 3D microenvironment each strain presents a characteristic migration pattern that can be associated to their in vivo behaviour. Altogether, data presented here repositionate spheroids as a valuable tool to study host-pathogen interactions.


Subject(s)
Cell Culture Techniques/methods , Host-Pathogen Interactions , Spheroids, Cellular/parasitology , Trypanosoma cruzi/pathogenicity , Animals , Chagas Disease/parasitology , Child , Chlorocebus aethiops , Flow Cytometry , HEK293 Cells , HeLa Cells , Humans , Movement , Spheroids, Cellular/cytology , Trypanosoma cruzi/physiology , Vero Cells
10.
Infect Genet Evol ; 78: 104062, 2020 03.
Article in English | MEDLINE | ID: mdl-31683004

ABSTRACT

A key parameter in the transmission of vector-borne infections, including Chagas disease, is the ability of the different host species to transmit the parasite to the vector (infectiousness). Here, we determined infectiousness to the vector of Trypanosoma cruzi-seropositive humans examined by artificial xenodiagnosis (XD), established its relationship with T. cruzi DNA levels (a surrogate of intensity of parasitemia) quantified by real-time PCR (qPCR), and assessed whether infectiousness was associated with the body mass index (BMI), age, ethnic background and parasite genotype. XD was performed to 117 T. cruzi-seropositive residents from Pampa del Indio and parasite load was quantified in 81 of them. Using optical microscopy (OM) 33.6% of the seropositive people tested were infectious and this fraction nearly doubled (66.0%) when XD triatomines were examined by kDNA-PCR. The mean infectiousness (defined as the percentage of all infected triatomines detected by OM at any time point among the total number of insects examined by OM 30 days post-feeding) was 5.2%, and the mean parasite load was 0.51 parasite equivalents per ml. Infectiousness to the vector was associated negatively with age and BMI, and positively with the detection of parasitemia by kDNA-PCR, and parasite load by qPCR in bivariate analysis. Patients with a positive XD by OM exhibited a significantly higher mean parasite load. Using multiple regression, infectiousness was associated with parasite load (positively) and with the household presence of T. infestans and Qom ethnic group (negatively); no significant association was observed with age or its interaction with ethnicity. We did not find significant associations between identified DTUs and infectiousness or parasite load. Infectiousness was aggregated: 18% of the people examined by XD generated 80% of the infected triatomines. Detecting and treating the super-infectious fraction of the infected human would disproportionally impact on domestic transmission risks. Nonetheless, treatment of all eligible infected people who meet the inclusion criteria regardless of their parasitemia should be ensured to improve their prognosis.


Subject(s)
Chagas Disease/transmission , DNA, Kinetoplast/genetics , Triatominae/parasitology , Trypanosoma cruzi/pathogenicity , Adolescent , Adult , Aged , Animals , Antibodies, Protozoan/metabolism , Argentina , Body Mass Index , Chagas Disease/immunology , Child , Genotype , Humans , Middle Aged , Parasite Load , Real-Time Polymerase Chain Reaction , Rural Population , Trypanosoma cruzi/genetics , Trypanosoma cruzi/immunology , Xenodiagnosis , Young Adult
11.
Front Microbiol ; 10: 1250, 2019.
Article in English | MEDLINE | ID: mdl-31231337

ABSTRACT

Trypanosoma cruzi is the protozoan unicellular parasite that causes Chagas disease. It can be transmitted from infected mothers to their babies via the connatal route, thus being able to perpetuate even in the absence of Triatomine insect vectors. Chagas disease was originally endemic in Central and South America, but migration of infected women of childbearing age has spread the T. cruzi congenital infection to non-endemic areas like North America, Europe, Japan, and Australia. Currently, 7 million people are affected by this infection worldwide. This review focuses on the relevance of the T. cruzi parasite levels in different aspects of the congenital T. cruzi infection such as the mother-to-child transmission rate, the maternal and fetal immune response, and its impact on the diagnosis of infected newborns. Improvements in detection of this parasite, with tools that can be easily adapted to be used in remote rural areas, will make the early diagnosis of infected children possible, allowing a prompt trypanocidal treatment and avoiding the current loss of opportunities for the diagnosis of 100% of T. cruzi congenitally infected infants.

12.
Parasitology ; 146(3): 305-313, 2019 03.
Article in English | MEDLINE | ID: mdl-30301480

ABSTRACT

This study evaluated the effectiveness of low doses of benznidazole (BNZ) on continuous administration (BNZc), combined with allopurinol (ALO), in C57BL/6J and C3H/HeN mice infected with Trypanosoma cruzi Nicaragua strain and T. cruzi Sylvio-X10/4 clone. TcN-C57BL/6J was also treated with intermittent doses of BNZ (BNZit). The drug therapy started 3 months post infection (pi) in the chronic phase of mice with heart disease progression, followed-up at 6 months pi. TcN-C57BL/6J treated with BNZc was also monitored up to 12 months pi by serology and electrocardiogram. These mice showed severe electrical abnormalities, which were not observed after BNZc or BNZit. ALO only showed positive interaction with the lowest dose of BNZ. A clear parasitic effect, with significant reductions in antibody titres and parasitic loads, was achieved in all models with low doses of BNZ, and a 25% reduction of the conventional dose showed more efficacy to inhibit the development of the pathology. However, BNZ 75 showed partial efficacy in the TcSylvio-X10/4-C3H/HeN model. In our experimental designs, C57BL/6J allowed to clearly define a chronic phase, and through reproducible efficacy indicators, it can be considered a good preclinical model.


Subject(s)
Allopurinol/therapeutic use , Chagas Disease/drug therapy , Nitroimidazoles/therapeutic use , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/drug effects , Allopurinol/administration & dosage , Animals , Dose-Response Relationship, Drug , Drug Therapy, Combination , Female , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Nitroimidazoles/administration & dosage , Random Allocation , Specific Pathogen-Free Organisms , Trypanocidal Agents/administration & dosage
13.
Biomolecules ; 8(4)2018 10 31.
Article in English | MEDLINE | ID: mdl-30384485

ABSTRACT

Trypanosoma cruzi is the etiological agent of Chagas disease. It affects eight million people worldwide and can be spread by several routes, such as vectorborne transmission in endemic areas and congenitally, and is also important in non-endemic regions such as the United States and Europe due to migration from Latin America. Cyclophilins (CyPs) are proteins with enzymatic peptidyl-prolyl isomerase activity (PPIase), essential for protein folding in vivo. Cyclosporin A (CsA) has a high binding affinity for CyPs and inhibits their PPIase activity. CsA has proved to be a parasiticidal drug on some protozoa, including T. cruzi. In this review, we describe the T. cruzi cyclophilin gene family, that comprises 15 paralogues. Among the proteins isolated by CsA-affinity chromatography, we found orthologues of mammalian CyPs. TcCyP19, as the human CyPA, is secreted to the extracellular environment by all parasite stages and could be part of a complex interplay involving the parasite and the host cell. TcCyP22, an orthologue of mitochondrial CyPD, is involved in the regulation of parasite cell death. Our findings on T. cruzi cyclophilins will allow further characterization of these processes, leading to new insights into the biology, the evolution of metabolic pathways, and novel targets for anti-T. cruzi control.


Subject(s)
Cyclophilins/metabolism , Parasites/physiology , Protozoan Proteins/metabolism , Trypanosoma cruzi/physiology , Amino Acid Sequence , Animals , Antiprotozoal Agents/pharmacology , Chagas Disease/parasitology , Cyclophilins/chemistry , Parasites/drug effects , Protozoan Proteins/chemistry
14.
Front Immunol ; 9: 1958, 2018.
Article in English | MEDLINE | ID: mdl-30271399

ABSTRACT

Background: In contrast to adults, Trypanosoma cruzi-infected children have more broadly functional Trypanosoma cruzi-specific T cells, and the total T-cell compartment exhibits fewer signs of immune exhaustion. However, not much is known about the link between immunocompetence and the treatment efficacy for human Chagas disease. Methods: Using cytokine enzyme-linked immunosorbent spot (ELISPOT) polychromatic flow cytometry, cytometric bead assay, multiplex serological assays and quantitative PCR, we evaluated T. cruzi-specific T-cell and antibody immune responses, T-cell phenotypes and parasitemia in children in the early chronic phase of Chagas disease undergoing anti-Trypanosoma cruzi treatment. Results: Treatment with benznidazole or nifurtimox induced a decline in T. cruzi-specific IFN-γ- and IL-2-producing cells and proinflammatory cytokines and chemokines. T-cell responses became detectable after therapy in children bearing T-cell responses under background levels prior to treatment. The total frequencies of effector, activated and antigen-experienced T cells also decreased following anti-T. cruzi therapy, along with an increase in T cells expressing the receptor of the homeostatic cytokine IL-7. Posttreatment changes in several of these markers distinguished children with a declining serologic response suggestive of successful treatment from those with sustained serological responses in a 5-year follow-up study. A multivariate analysis demonstrated that lower frequency of CD4+CD45RA-CCR7-CD62L- T cells prior to drug therapy was an independent indicator of successful treatment. Conclusions: These findings further validate the usefulness of alternative metrics to monitor treatment outcomes. Distinct qualitative and quantitative characteristics of T cells prior to drug therapy may be linked to treatment efficacy.


Subject(s)
Chagas Disease , Chemokines/immunology , Nitroimidazoles/administration & dosage , Parasitemia , T-Lymphocytes/immunology , Trypanosoma cruzi/immunology , Adolescent , Chagas Disease/drug therapy , Chagas Disease/immunology , Chagas Disease/pathology , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Male , Parasitemia/drug therapy , Parasitemia/immunology , Parasitemia/pathology , T-Lymphocytes/pathology
15.
PLoS One ; 13(9): e0203462, 2018.
Article in English | MEDLINE | ID: mdl-30183775

ABSTRACT

Trypanosoma cruzi is a genetically heterogeneous group of organisms that cause Chagas disease. It has been long suspected that the clinical outcome of the disease and response to therapeutic agents are, at least in part, related to the genetic characteristics of the parasite. Herein, we sought to validate the significance of the genotype of T. cruzi isolates recovered from patients with different clinical forms of Chagas disease living in Argentina on their biological behaviour and susceptibility to drugs. Genotype identification of the newly established isolates confirmed the reported predominance of TcV, with a minor frequency of TcI. Epimastigote sensitivity assays demonstrated marked dissimilar responses to benznidazole, nifurtimox, pentamidine and dihydroartemisinin in vitro. Two TcV isolates exhibiting divergent response to benznidazole in epimastigote assays were further tested for the expression of anti-oxidant proteins. Benznidazole-resistant BOL-FC10A epimastigotes had decreased expression of Old Yellow Enzyme and cytosolic superoxide dismutase, and overexpression of mitochondrial superoxide dismutase and tryparedoxin- 1, compared to benznidazole-susceptible AR-SE23C parasites. Drug sensitivity assays on intracellular amastigotes and trypomastigotes reproduced the higher susceptibility of AR-SE23C over BOL-FC10A parasites to benznidazole observed in epimastigotes assays. However, the susceptibility/resistance profile of amastigotes and trypomastigotes to nifurtimox, pentamidine and dihydroartemisinin varied markedly with respect to that of epimastigotes. C3H/He mice infected with AR-SE23C trypomastigotes had higher levels of parasitemia and mortality rate during the acute phase of infection compared to mice infected with BOL-FC10A trypomastigotes. Treatment of infected mice with benznidazole or nifurtimox was efficient to reduce patent parasitemia induced by either isolate. Nevertheless, qPCR performed at 70 dpi revealed parasite DNA in the blood of mice infected with AR-SE23C but not in BOL-FC10A infected mice. These results demonstrate high level of intra-type diversity which may represent an important obstacle for the testing of chemotherapeutic agents.


Subject(s)
Chagas Disease/metabolism , Drug Resistance/drug effects , Genotype , Phenotype , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/metabolism , Adult , Animals , Argentina , Chagas Disease/drug therapy , Chagas Disease/genetics , Chlorocebus aethiops , Female , Humans , Male , Mice , Middle Aged , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Trypanosoma cruzi/genetics , Vero Cells
16.
Pediatrics ; 141(Suppl 5): S451-S455, 2018 04.
Article in English | MEDLINE | ID: mdl-29610170

ABSTRACT

Trypanosoma cruzi, the causing agent of Chagas disease, can be transmitted to the offspring of infected pregnant women, thus being an epidemiologically important way of parasite transmission in humans. In addition, the migration of infected women from endemic areas to nonendemic countries may export this parasite infection. The diagnosis of congenital Chagas disease relies on the detection of the parasite because maternal antibodies are passively transferred to infants during pregnancy. The diagnosis of congenital infection can also be confirmed by detection of infant-specific anti-T cruzi antibodies at 10 months after delivery. Because early detection of T cruzi infection in newborns allows an efficient trypanocidal treatment and cure, more sensitive molecular techniques such as DNA amplification are being used for a prompt parasitological diagnosis of children born to seropositive mothers. In this report, we describe a diagnosis case of a child congenitally infected with T cruzi who tested negative for parasite detection both by microscopic observation and DNA amplification at 20 days and 6 months after delivery. However, at 7 months of age, a hemoculture was made from the infant's blood, and the infective parasite was finally isolated and classified as T cruzi discrete typing unit I. In a retrospective study, real-time polymerase chain reaction also allowed detecting the parasite but failed to detect any parasite load in earlier control samples. This case report stresses that even when molecular techniques are negative, a long-term follow-up is necessary for the diagnosis of infants congenitally infected with T cruzi.


Subject(s)
Chagas Disease/congenital , Chagas Disease/diagnosis , Early Diagnosis , Real-Time Polymerase Chain Reaction , Chagas Disease/transmission , Follow-Up Studies , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical , Male , Nucleic Acid Amplification Techniques , Parasite Load , Retrospective Studies
17.
PLoS Negl Trop Dis ; 11(6): e0005626, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28609481

ABSTRACT

The ubiquitin-proteasome system is a post-translational regulatory pathway for controlling protein stability and activity that underlies many fundamental cellular processes, including cell cycle progression. Target proteins are tagged with ubiquitin molecules through the action of an enzymatic cascade composed of E1 ubiquitin activating enzymes, E2 ubiquitin conjugating enzymes, and E3 ubiquitin ligases. One of the E3 ligases known to be responsible for the ubiquitination of cell cycle regulators in eukaryotes is the SKP1-CUL1-F-box complex (SCFC). In this work, we identified and studied the function of homologue proteins of the SCFC in the life cycle of Trypanosoma brucei, the causal agent of the African sleeping sickness. Depletion of trypanosomal SCFC components TbRBX1, TbSKP1, and TbCDC34 by RNAi resulted in decreased growth rate and contrasting cell cycle abnormalities for both procyclic (PCF) and bloodstream (BSF) forms. Depletion of TbRBX1 in PCF cells interfered with kinetoplast replication, whilst depletion of TbSKP1 arrested PCF and BSF cells in the G1/S transition. Silencing of TbCDC34 in BSF cells resulted in a block in cytokinesis and caused rapid clearance of parasites from infected mice. We also show that TbCDC34 is able to conjugate ubiquitin in vitro and in vivo, and that its activity is necessary for T. brucei infection progression in mice. This study reveals that different components of a putative SCFC have contrasting phenotypes once depleted from the cells, and that TbCDC34 is essential for trypanosome replication, making it a potential target for therapeutic intervention.


Subject(s)
Cell Cycle Proteins/genetics , Cytokinesis , Protozoan Proteins/genetics , SKP Cullin F-Box Protein Ligases/genetics , Trypanosoma brucei brucei/genetics , Ubiquitin-Conjugating Enzymes/genetics , Amino Acid Sequence , Animals , Cell Line , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Trypanosoma brucei brucei/growth & development , Trypanosomiasis, African/parasitology
18.
Cell Death Discov ; 3: 16092, 2017.
Article in English | MEDLINE | ID: mdl-28179991

ABSTRACT

Mitochondria have an important role in energy production, homeostasis and cell death. The opening of the mitochondrial permeability transition pore (mPTP) is considered one of the key events in apoptosis and necrosis, modulated by cyclophilin D (CyPD), a crucial component of this protein complex. In Trypanosoma cruzi, the protozoan parasite that causes Chagas disease, we have previously described that mitochondrial permeability transition occurs after oxidative stress induction in a cyclosporin A-dependent manner, a well-known cyclophilin inhibitor. In the present work, a mitochondrial parasite cyclophilin, named TcCyP22, which is homolog to the mammalian CyPD was identified. TcCyP22-overexpressing parasites showed an enhanced loss of mitochondrial membrane potential and loss of cell viability when exposed to a hydrogen peroxide stimulus compared with control parasites. Our results describe for the first time in a protozoan parasite that a mitochondrial cyclophilin is a component of the permeability transition pore and is involved in regulated cell death induced by oxidative stress.

19.
PLoS Negl Trop Dis ; 11(2): e0005336, 2017 02.
Article in English | MEDLINE | ID: mdl-28192425

ABSTRACT

BACKGROUND: Rural populations in the Gran Chaco region have large prevalence rates of Trypanosoma cruzi infection and very limited access to diagnosis and treatment. We implemented an innovative strategy to bridge these gaps in 13 rural villages of Pampa del Indio held under sustained vector surveillance and control. METHODOLOGY: The non-randomized treatment program included participatory workshops, capacity strengthening of local health personnel, serodiagnosis, qualitative and quantitative PCRs, a 60-day treatment course with benznidazole and follow-up. Parents and healthcare agents were instructed on drug administration and early detection and notification of adverse drug-related reactions (ADR). Healthcare agents monitored medication adherence and ADRs at village level. PRINCIPAL FINDINGS: The seroprevalence of T. cruzi infection was 24.1% among 395 residents up to 18 years of age examined. Serodiagnostic (70%) and treatment coverage (82%) largely exceeded local historical levels. Sixty-six (85%) of 78 eligible patients completed treatment with 97% medication adherence. ADRs occurred in 32% of patients, but most were mild and manageable. Four patients showing severe or moderate ADRs required treatment withdrawal. T. cruzi DNA was detected by qPCR in 47 (76%) patients before treatment, and persistently occurred in only one patient over 20-180 days posttreatment. CONCLUSIONS AND SIGNIFICANCE: Our results demonstrate that diagnosis and treatment of T. cruzi infection in remote, impoverished rural areas can be effectively addressed through strengthened primary healthcare attention and broad social participation with adequate external support. This strategy secured high treatment coverage and adherence; effectively managed ADRs, and provided early evidence of positive therapeutic responses.


Subject(s)
Chagas Disease/diagnosis , Chagas Disease/drug therapy , Health Services Accessibility , Health Services Administration , Trypanocidal Agents/administration & dosage , Argentina , Humans , Primary Health Care , Rural Population , Social Participation
20.
J Immunol ; 196(11): 4596-602, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27183607

ABSTRACT

Trypanosoma cruzi, the causing agent of Chagas disease, leads to an activation of the immune system in congenitally infected infants. In this study, we measured a set of cytokines/chemokines and the levels of parasitemia by quantitative PCR in the circulation of neonates born to T. cruzi-infected mothers to evaluate the predictive value of these mediators as biomarkers of congenital transmission. We conducted a retrospective cohort study of 35 infants with congenital T. cruzi infection, of which 15 and 10 infants had been diagnosed by detection of parasites by microscopy in the first and sixth month after delivery, respectively, and the remaining 10 had been diagnosed by the presence of T. cruzi-specific Abs at 10-12 mo old. Uninfected infants born to either T. cruzi-infected or uninfected mothers were also evaluated as controls. The plasma levels of IL-17A, MCP-1, and monokine induced by IFN-γ were increased in infants congenitally infected with T. cruzi, even before they developed detectable parasitemia or seroconversion. Infants diagnosed between 6 and 12 mo old also showed increased levels of IL-6 and IL-17F at 1 mo of age. Conversely, infants who did not develop congenital T. cruzi infection had higher levels of IFN-γ than infected infants born to uninfected mothers. Monokine induced by IFN-γ, MCP-1, and IFN-γ production induced in T. cruzi-infected infants correlated with parasitemia, whereas the plasma levels of IL-17A, IL-17F, and IL-6 were less parasite load dependent. These findings support the existence of a distinct profile of cytokines and chemokines in the circulation of infants born to T. cruzi-infected mothers, which might predict congenital infection.


Subject(s)
Chagas Disease/blood , Chagas Disease/congenital , Cytokines/blood , Biomarkers/blood , Chagas Disease/immunology , Chagas Disease/parasitology , Cytokines/immunology , Female , Humans , Infant, Newborn , Male , Trypanosoma cruzi/immunology , Trypanosoma cruzi/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...