Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 5: 3414, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24572991

ABSTRACT

Two-dimensional electron gases (2DEGs) in SrTiO3 have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Here we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the d-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO3-based 2DEGs, and yield new microscopic insights on their functional properties.


Subject(s)
Gases/chemistry , Oxides/chemistry , Strontium/chemistry , Titanium/chemistry , Chemical Phenomena , Electrons , Kinetics , Models, Chemical , Models, Molecular
2.
Nano Lett ; 14(3): 1312-6, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24552197

ABSTRACT

Several transition-metal dichalcogenides exhibit a striking crossover from indirect to direct band gap semiconductors as they are thinned down to a single monolayer. Here, we demonstrate how an electronic structure characteristic of the isolated monolayer can be created at the surface of a bulk MoS2 crystal. This is achieved by intercalating potassium in the interlayer van der Waals gap, expanding its size while simultaneously doping electrons into the conduction band. Our angle-resolved photoemission measurements reveal resulting electron pockets centered at the K̅ and K' points of the Brillouin zone, providing the first momentum-resolved measurements of how the conduction band dispersions evolve to yield an approximately direct band gap of ∼1.8 eV in quasi-freestanding monolayer MoS2. As well as validating previous theoretical proposals, this establishes a novel methodology for manipulating electronic structure in transition-metal dichalcogenides, opening a new route for the generation of large-area quasi-freestanding monolayers for future fundamental study and use in practical applications.

3.
Phys Rev Lett ; 108(11): 117602, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22540511

ABSTRACT

We demonstrate the formation of a two-dimensional electron gas (2DEG) at the (100) surface of the 5d transition-metal oxide KTaO3. From angle-resolved photoemission, we find that quantum confinement lifts the orbital degeneracy of the bulk band structure and leads to a 2DEG composed of ladders of subband states of both light and heavy carriers. Despite the strong spin-orbit coupling, our measurements provide a direct upper bound for the potential Rashba spin splitting of only Δk(parallel)}~0.02 Å(-1) at the Fermi level. The polar nature of the KTaO3(100) surface appears to help mediate the formation of the 2DEG as compared to nonpolar SrTiO3(100).

SELECTION OF CITATIONS
SEARCH DETAIL
...