Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 107(6-1): 064139, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37464599

ABSTRACT

We investigate the evolution dynamics of inhomogeneous discrete-time one-dimensional quantum walks displaying long-range correlations in both space and time. The associated quantum coin operators of internal states are built to exhibit random inhomogeneity distribution of long-range correlations embedded in the time evolution protocol through a fractional Brownian motion with spectrum following a power-law behavior, S(k)∼1/k^{ν}. From extensive numerical simulations with averages over a large number of independent realizations of the phases of quantum coins, the power-law correlated disorder encoded in the coin phases is shown to give rise to a wide variety of spreading patterns of the qubit states, from localized to subdiffusive, diffusive, and superdiffusive (including ballistic) behavior, depending on the relative strength of the parameters driving the correlation degree. Dispersion control is possible in one-dimensional discrete-time quantum walks by tuning the long-range correlation properties assigned to the inhomogeneous quantum coin operator.

2.
Phys Rev E ; 104(5-1): 054106, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34942820

ABSTRACT

We perform a finite-time scaling analysis over the detrapping point of a three-state quantum walk on the line. The coin operator is parametrized by ρ that controls the wave packet spreading velocity. The input state prepared at the origin is set as a symmetric linear combination of two eigenstates of the coin operator with a characteristic mixing angle θ, one of them being the component that results in full spreading occurring at θ_{c}(ρ) for which no fraction of the wave packet remains trapped near the initial position. We show that relevant quantities, such as the survival probability and the participation ratio assume single parameter scaling forms at the vicinity of the detrapping angle θ_{c}. In particular, we show that the participation ratio grows linearly in time with a logarithmic correction, thus, shedding light on previous reports of sublinear behavior.

3.
Phys Rev E ; 100(3-1): 032106, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31639994

ABSTRACT

We study the localization properties, energy spectra, and coin-position entanglement of the aperiodic discrete-time quantum walks. The aperiodicity is described by spatially dependent quantum coins distributed on the lattice, whose distribution is neither periodic (Bloch-like) nor random (Anderson-like). Within transport properties we identified delocalized and localized quantum walks mediated by a proper adjusting of aperiodic parameter. Both scenarios are studied by exploring typical quantities (inverse participation ratio, survival probability, and wave packet width), as well as the energy spectra of an associated effective Hamiltonian. By using the energy spectra analysis, we show that the early stage the inhomogeneity leads to a vanishing gap between two main bands, which justifies the predominantly delocalized character observed for ν<0.5. With increase of ν arise gaps and flat bands on the energy spectra, which corroborates the suppression of transport detected for ν>0.5. For ν high enough, we observe an energy spectra, which resembles that described by the one-dimensional Anderson model. Within coin-position entanglement, we show many settings in which an enhancement in the ability to entangle is observed. This behavior brings new information about the role played by aperiodicity on the coin-position entanglement for static inhomogeneous systems, reported before as almost always reducing the entanglement when comparing with the homogeneous case. We extend the analysis in order to show that systems with static inhomogeneity are able to exhibit asymptotic limit of entanglement.

SELECTION OF CITATIONS
SEARCH DETAIL
...