Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 12(9): 11155-11162, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32049480

ABSTRACT

Capabilities of highly sensitive surface-enhanced infrared absorption (SEIRA) spectroscopy are demonstrated by exploiting large-area templates (cm2) based on self-organized (SO) nanorod antennas. We engineered highly dense arrays of gold nanorod antennas featuring polarization-sensitive localized plasmon resonances, tunable over a broadband near- and mid-infrared (IR) spectrum, in overlap with the so-called "functional group" window. We demonstrate polarization-sensitive SEIRA activity, homogeneous over macroscopic areas and stable in time, by exploiting prototype self-assembled monolayers of IR-active octadecanthiol (ODT) molecules. The strong coupling between the plasmonic excitation and molecular stretching modes gives rise to characteristic Fano resonances in SEIRA. The SO engineering of the active hotspots in the arrays allows us to achieve signal amplitude improved up to 5.7%. This figure is competitive to the response of lithographic nanoantennas and is stable when the optical excitation spot varies from the micro- to macroscale, thus enabling highly sensitive SEIRA spectroscopy with cost-effective nanosensor devices.

2.
Nanotechnology ; 29(35): 355301, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-29856732

ABSTRACT

We investigate the scattering properties of novel kinds of nano-textured substrates, fabricated in a self-organized fashion by defocused ion beam sputtering. These substrates provide strong and broadband scattering of light and can be useful for applications in thin-film solar cells. In particular, we characterize the transmitted light in terms of haze and angle-resolved scattering, and we compare our results with those obtained for the commonly employed Asahi-U texture. The results indicate that the novel substrate has better scattering properties compared to reference Asahi-U substrates. We observe super-Lambertian light scattering behavior in selected spectral and angular regions due to the peculiar morphology of the nano-textured interface, which combines high aspect ratio pseudo random structures with a one-dimensional periodic pattern. The enhancement of light absorption observed in a prototype thin film semiconductor absorber grown on nano-textured glass with respect to an Asahi-U substrate further confirms the superior light trapping properties of the novel substrate.

3.
Environ Sci Technol ; 52(11): 6714-6722, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29688717

ABSTRACT

Heavy fuel oil (HFO) particulate matter (PM) emitted by marine engines is known to contain toxic heavy metals, including vanadium (V) and nickel (Ni). The toxicity of such metals will depend on the their chemical state, size distribution, and mixing state. Using online soot-particle aerosol mass spectrometry (SP-AMS), we quantified the mass of five metals (V, Ni, Fe, Na, and Ba) in HFO-PM soot particles produced by a marine diesel research engine. The in-soot metal concentrations were compared to in-PM2.5 measurements by inductively coupled plasma-optical emission spectroscopy (ICP-OES). We found that <3% of total PM2.5 metals was associated with soot particles, which may still be sufficient to influence in-cylinder soot burnout rates. Since these metals were most likely present as oxides, whereas studies on lower-temperature boilers report a predominance of sulfates, this result implies that the toxicity of HFO PM depends on its combustion conditions. Finally, we observed a 4-to-25-fold enhancement in the ratio V:Ni in soot particles versus PM2.5, indicating an enrichment of V in soot due to its lower nucleation/condensation temperature. As this enrichment mechanism is not dependent on soot formation, V is expected to be generally enriched within smaller HFO-PM particles from marine engines, enhancing its toxicity.


Subject(s)
Fuel Oils , Particulate Matter , Metals , Soot , Vehicle Emissions
4.
J Chem Phys ; 145(14): 144703, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27782523

ABSTRACT

We have investigated the growth and stability of molecular ultra-thin films, consisting of rod-like semiconducting para-hexaphenyl (6P) molecules vapor deposited on ion beam modified TiO2(110) surfaces. The ion bombarded TiO2(110) surfaces served as growth templates exhibiting nm-scale anisotropic ripple patterns with controllable parameters, like ripple depth and length. In turn, by varying the ripple depth one can tailor the average local slope angle and the local step density/terrace width of the stepped surface. Here, we distinguish three types of substrates: shallow, medium, and deep rippled surfaces. On these substrates, 6P sub-monolayer deposition was carried out in ultra-high vacuum by organic molecular beam evaporation (OMBE) at room temperature leading to the formation of islands consisting of upright standing 6P molecules, which could be imaged by scanning electron microscopy and atomic force microscopy (AFM). It has been found that the local slope and terrace width of the TiO2 template strongly influences the stability of OMBE deposited 6P islands formed on the differently rippled substrates. This effect is demonstrated by means of tapping mode AFM, where an oscillating tip was used as a probe for testing the stability of the organic structures. We conclude that by increasing the local slope of the TiO2(110) surface the bonding strength between the nearest neighbor standing molecules is weakened due to the presence of vertical displacement in the molecular layer in correspondence to the TiO2 atomic step height.

5.
Chem Commun (Camb) ; 49(98): 11506-8, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24177225

ABSTRACT

Structural features and magnetic behaviour of TbPc2 thin films sublimated on LSMO and on cobalt surfaces have been investigated by synchrotron-based XNLD and XMCD techniques. Different orientation of the molecules is observed for the two substrates. No significant magnetic interaction with the ferromagnetic substrates is detected.

6.
Nanotechnology ; 24(22): 225201, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23633473

ABSTRACT

Nanostructured glass substrates endowed with high aspect ratio one-dimensional corrugations are prepared by defocused ion beam erosion through a self-organized gold (Au) stencil mask. The shielding action of the stencil mask is amplified by co-deposition of gold atoms during ion bombardment. The resulting glass nanostructures enable broadband anti-reflection functionality and at the same time ensure a high efficiency for diffuse light scattering (Haze). It is demonstrated that the patterned glass substrates exhibit a better photon harvesting than the flat glass substrate in p-i-n type thin film a-Si:H solar cells.

7.
Phys Rev Lett ; 107(25): 257401, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22243110

ABSTRACT

Here we report the experimental observation of circular dichroism in the second-harmonic field (800-400 nm conversion) generated by self-organized gold nanowire arrays with subwavelength periodicity (160 nm). Such circular dichroism, raised by a nonlinear optical extrinsic chirality, is the evident signature of the sample morphology. It arises from the curvature of the self-assembled wires, producing a lack of symmetry at oblique incidence. The results were compared, both in the optical linear and nonlinear regime, with a reference sample composed of straight wires. Despite the weak extrinsic optical chirality of our samples (not observable by our optical linear measurements), high visibility (more than 50%) was obtained in the second-harmonic generated field.


Subject(s)
Circular Dichroism , Gold/chemistry , Nanotubes/chemistry , Nanotubes/ultrastructure , Materials Testing , Surface Properties
8.
J Phys Condens Matter ; 21(22): 224022, 2009 Jun 03.
Article in English | MEDLINE | ID: mdl-21715760

ABSTRACT

We review results relative to the formation of regular nanoscale patterns on metal substrates exposed to defocused ion beam irradiation. Particular emphasis is placed on work which demonstrates the possibility of controllably modifying chemico-physical properties of the material by tailoring the nanoscale morphology during IBS patterning. Starting from the well-established results found on single-crystal model systems, we show how the controlled modification of the atomic step termination can deeply affect chemical reactivity or magnetic anisotropy. We then look in greater detail at the more recent attempts focused on the extension of IBS patterning on supported polycrystalline metal films, a promising class of systems in view of potential applications. A modification of the functional properties of metal films can also be obtained by forcing a shape anisotropy of the nanostructures. The modification of the optical response of polycrystalline metal nanowires supported on anisotropic templates produced by IBS provides a clear example of this.

9.
Phys Rev Lett ; 97(5): 056103, 2006 Aug 04.
Article in English | MEDLINE | ID: mdl-17026119

ABSTRACT

CO dissociation on rhomboidal faceted nanopyramids, produced on Rh(110) by fine-tuning of ion irradiation conditions, has been studied by high resolution core-level spectroscopy. We find that this morphology presents a large efficiency towards CO dissociation, a process which is inhibited on flat (110) terraces. We also measured the reactivity of nanostructures bound by different artificial step distributions identifying the sites responsible for the molecular bond disruption in the undercoordinated (n=6) edges running along the [11[over ]2] equivalent directions, with CO sitting in on-top configuration.

10.
Phys Rev Lett ; 96(21): 216101, 2006 Jun 02.
Article in English | MEDLINE | ID: mdl-16803253

ABSTRACT

We have studied the nanofriction of Ne monolayers with a quartz-crystal microbalance technique at temperatures below 6.5 K and in ultrahigh-vacuum conditions. Very homogeneous and smooth lead electrodes have been physically deposited on a quartz blank at 150 K and then annealed at room temperatures. With such a Pb-plated quartz-crystal microbalance, we have observed a pronounced depinning transition separating a low-coverage region, where the film is nearly locked to the oscillating electrode, from a high-coverage region characterized by slippage at the solid-fluid boundary. Such a behavior has been found to be very reproducible. These data are suggestive of a structural depinning of the solid Ne film when it becomes incommensurate with the lead substrate, in agreement with the results of an extensive molecular-dynamics study.

11.
Phys Rev Lett ; 96(5): 057204, 2006 Feb 10.
Article in English | MEDLINE | ID: mdl-16486975

ABSTRACT

We have investigated the possibility of isolating the step-induced in-plane uniaxial magnetic anisotropy in Fe/Ag(001) films on which nanoscale surface ripples were fabricated by the ion sculpting technique. For rippled Fe films deposited on flat Ag(001), the steps created along the ripple sidewalls are shown to be the only source of uniaxial anisotropy. Ion sculpting of ultrathin magnetic films allows one to selectively study the step-induced anisotropy and to investigate the correlation between local atomic environment and magnetic properties.

12.
Phys Rev Lett ; 93(25): 256103, 2004 Dec 17.
Article in English | MEDLINE | ID: mdl-15697917

ABSTRACT

We report on the far from equilibrium self-organized morphologies obtained after Xe ion irradiation of the Rh(110) and Cu(110) surfaces. Here we experimentally identify by means of high resolution LEED a novel interfacial state characterized by a rhomboidal pyramid islanding with majority steps oriented along nonequilibrium low-symmetry directions. The formation of the novel rhomboidal pyramid state and the transition to the well-known rippled phases results from a delicate interplay of kinetic processes which are controlled by acting on temperature, ion flux, and impact energy.

13.
Phys Rev Lett ; 91(16): 167207, 2003 Oct 17.
Article in English | MEDLINE | ID: mdl-14611439

ABSTRACT

We have investigated the correlation between morphology and magnetic anisotropy in nanostructured Co films on Cu(001). The formation of nanoscale ripples by ion erosion is found to deeply affect the magnetic properties of the Co film. A surface-type uniaxial magnetic anisotropy with easy axis parallel to the ripples is observed. The origin of the magnetic anisotropy has been identified with the modification of thermodynamic-step distribution induced by ripple formation. At higher ion doses, when Co ripples detach and crystalline nanowires form, a strong enhancement of the magnetic anisotropy due to magnetostatic contributions is observed.

14.
Phys Rev Lett ; 86(5): 838-41, 2001 Jan 29.
Article in English | MEDLINE | ID: mdl-11177953

ABSTRACT

We present a scanning tunneling microscopy study of the direct comparison between homoepitaxial deposition and surface ion sputtering on the Ag(001) system. At a temperature of 200 K, sputtering results in mound formation similar to the epitaxy case, while at higher temperatures an erosive regime sets in with the appearance of regular square pits. Contrary to the conventional wisdom, which considers ion sputtering as a deposition of vacancies, the analysis of single ion impact events reveals that the process produces both adatom and vacancy clusters. The key parameter determining the temperature dependence of surface morphology turns out to be the mobility of the adatom clusters which exceeds that of vacancy clusters.

15.
Phys Rev Lett ; 84(11): 2445-8, 2000 Mar 13.
Article in English | MEDLINE | ID: mdl-11018906

ABSTRACT

We have investigated the homoepitaxial growth of Ag(110) in the multilayer regime. After deposition of 30 monolayers of Ag at a temperature of 210 K a ripplelike surface instability is produced and the ridges of the ripples, as well as the majority steps, are found to be parallel to <11;0> which is the thermodynamically favored orientation. As the deposition temperature is decreased to 130 K, an unexpected 90 degrees switch of the ripple orientation is observed. The ridges of the ripples and the steps are in this case parallel to <100>. In the intermediate temperature range a checkerboard of rectangular mounds results. We interpret our results in terms of the peculiar hierarchy of interlayer and intralayer diffusion barriers present on the anisotropic Ag(110) surface.

16.
Phys Rev B Condens Matter ; 52(20): 14947-14953, 1995 Nov 15.
Article in English | MEDLINE | ID: mdl-9980836
SELECTION OF CITATIONS
SEARCH DETAIL
...