Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38752962

ABSTRACT

BACKGROUND: Accurate measurements of intracardiac electrograms (EGMs) remain a clinical challenge because of the suboptimal attenuation of far-field potentials. Multielectrode mapping catheters provide an opportunity to construct multipolar instead of bipolar EGMs for rejecting common far-field potentials recorded from a multivectorial space. OBJECTIVES: The purpose of this study was to develop a multipolar EGM and compare its characteristics to those of bipolar EGMs METHODS: Using a 36-electrode array catheter (Optrell-36; Biosense Webster), a far-field component was mathematically constructed from clusters of electrodes surrounding each inspected electrode. This component was subtracted from the unipolar waveform to produce a local unipolar, referred to as a "multipolar EGM." The performance of multipolar EGMs was evaluated in 7 swine with healed anteroseptal infarction. RESULTS: Multipolar EGMs proved superior in attenuating far-field potentials in infarct border zones, increasing the near-field to far-field ratio from 0.92 ± 0.2 to 2.25 ± 0.3 (P < 0.001). Removal of far-field components reduced the voltage amplitude (P < 0.001) and enlarged the infarct surface area (P = 0.02), aligning more closely with histological findings. Of 379 EGMs with ≥20 ms activation time difference between bipolar and multipolar EGMs, 95.3% (361 of 379) were accurately annotated using multipolar EGMs, while annotation based on bipolar EGM was predominantly made on far-field components. CONCLUSIONS: Multielectrode array catheters provide a unique platform for constructing multipolar EGMs. This new EGM may be beneficial for "purifying" local potentials within a complex electrical field, resulting in more accurate voltage and activation maps.

2.
Circ Arrhythm Electrophysiol ; 16(1): e011321, 2023 01.
Article in English | MEDLINE | ID: mdl-36595639

ABSTRACT

BACKGROUND: Endocardial bipolar voltage amplitude is largely derived from endocardial and subendocardial wall layers. This may result in situations of low bipolar voltage amplitude despite the presence of mid-myocardial including epicardial (ie, intramural-epicardial) viable myocardium. This study examined the utility of endocardial unipolar voltage mapping for detection of viable intramural-epicardial atrial myocardium. METHODS: In 15 swine, an atrial intercaval ablation line with an intentional gap was created. Animals survived for 6 to 8 weeks before electroanatomical mapping followed by sacrifice. Gaps were determined by the presence of electrical conduction and classified based on the histopathologiclly layer(s) of viable myocardium into the following: (1) transmural, (2) endocardial, and (3) intramural-epicardial. Voltage data from healthy, scar, and gap points were exported into excel. The sensitivity and specificity of bipolar and unipolar voltage amplitude to detect intramural-epicardial gaps were compared using receiver operating characteristic analysis. RESULTS: In 9 of 15 (60%) swine, a focal ablation gap was detected in the intercaval line, while in the remainder 6 of 15 (40%), the line was complete without gaps. Gaps were classified into transmural (n=3), endocardial (n=3), or intramural-epicardial (n=3). Intramural-epicardial gaps were characterized by very low bipolar voltage amplitude that was similar to areas with transmural scar (P=0.91). In comparison, unipolar voltage amplitude in intramural-epicardial gaps was significantly higher compared to transmural scar (P<0.001). Unipolar voltage amplitude had higher sensitivity (93% versus 14%, respectively) and similar specificity (95% versus 98%, respectively) to bipolar voltage for detection of intramural-epicardial gaps. CONCLUSIONS: Atrial unipolar voltage mapping may be a useful technique for identifying viable intramural-epicardial myocardium in patients with endocardial scar.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Tachycardia, Ventricular , Animals , Swine , Cicatrix , Myocardium/pathology , Endocardium , Catheter Ablation/methods
3.
JACC Clin Electrophysiol ; 8(4): 498-510, 2022 04.
Article in English | MEDLINE | ID: mdl-35450605

ABSTRACT

OBJECTIVES: This study sought to examine the effect of the return electrode's surface area on bipolar RFA lesion size. BACKGROUND: Bipolar radiofrequency ablation (RFA) is typically performed between 2 3.5-mm tip catheters serving as active and return electrodes. We hypothesized that increasing the surface area of the return electrode would increase lesion dimensions by reducing the circuit impedance, thus increasing the current into a larger tissue volume enclosed between the electrodes. METHODS: In step 1, ex vivo bipolar RFA was performed between 3.5-mm and custom-made return electrodes with increasing surface areas (20, 80, 180 mm2). In step 2, ex vivo bipolar RFA was performed between 3.5-mm and 3.5-mm or 8-mm electrode catheters positioned perpendicular or parallel to the tissue. In step 3, in vivo bipolar RFA was performed between 3.5-mm and either 3.5-mm or 8-mm parallel electrode at the: 1) left ventricular summit; 2) interventricular septum; and 3) healed anterior infarction. RESULTS: In step 1, increasing the surface area of the return electrode resulted in lower circuit impedance (R = -0.65; P < 0.001), higher current (R = +0.80; P < 0.001), and larger lesion volume (R = +0.88; P < 0.001). In step 2, an 8-mm return electrode parallel to tissue produced larger and deeper lesions compared with a 3.5-mm return electrode (P = 0.014 and P = 0.02). Similarly, in step 3, compared with a 3.5-mm, bipolar RFA with an 8-mm return electrode produced larger (volume: 1,525 ± 871 mm3 vs 306 ± 310 mm3, respectively; P < 0.001) and more transmural lesions (88% vs 0%; P < 0.001). CONCLUSIONS: Bipolar RFA using an 8-mm return electrode positioned parallel to the tissue produces larger lesions in comparison with a 3.5-mm return electrode.


Subject(s)
Catheter Ablation , Catheter Ablation/methods , Electrodes , Equipment Design , Heart Ventricles/surgery , Humans
4.
J Cardiovasc Electrophysiol ; 33(1): 73-80, 2022 01.
Article in English | MEDLINE | ID: mdl-34822200

ABSTRACT

INTRODUCTION: Direction-aware mapping algorithms improve the accuracy of voltage mapping by measuring the maximal voltage amplitude recorded in the direction of wavefront propagation. While beneficial for stationary catheters, its utility for roving catheters collecting electrograms (EGMs) at multiple angles is unknown. OBJECTIVE: To compare the directional dependence of bipolar voltage amplitude between stationary and roving catheters. METHODS: In 10 swine, a transcaval ablation line with a gap was created. The gap was mapped using an array catheter (Optrell™; Biosense Webster). In Step 1, the array was kept stationary over the gap, and four voltage maps were created during activation of the gap from superior, inferior, septal, and lateral directions. In Step 2, four additional maps were created; however, the catheter was allowed to move with points acquired at multiple angles. In Step 3, the gap was remapped; however, bipoles were computed using a direction-aware mapping algorithm. RESULTS: In a stationary catheter position, bipolar voltage distribution was influenced by the direction of activation with maximal differences obtained between orthogonal directions 32% (13%-53%). However, roving the catheter produced similar bipolar voltage maps irrespective of the direction of activation 11% (5%-18%). A direction-aware mapping algorithm was beneficial for reducing the directional dependence of voltage maps created by stationary catheters but not by roving catheters. CONCLUSION: The directional dependency of bipolar voltage amplitude is greatest when the catheter is stationary. However, when the catheter is allowed to rove and collect EGMs at multiple angles as occurs clinically, the directional dependence of bipolar voltage is minimal.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Algorithms , Animals , Atrial Fibrillation/surgery , Catheters , Electrophysiologic Techniques, Cardiac , Swine
5.
Circ Arrhythm Electrophysiol ; 14(11): e010205, 2021 11.
Article in English | MEDLINE | ID: mdl-34706551

ABSTRACT

BACKGROUND: High-power short-duration (HP-SD) radiofrequency ablation (RFA) has been proposed as a method for producing rapid and effective lesions for pulmonary vein isolation. The underlying hypothesis assumes an increased resistive heating phase and decreased conductive heating phase, potentially reducing the risk for esophageal thermal injury. The objective of this study was to compare the esophageal temperature dynamic profile between HP-SD and moderate-power moderate-duration (MP-MD) RFA ablation strategies. METHODS: In patients undergoing pulmonary vein isolation, RFA juxtaposed to the esophagus was delivered in an alternate sequence of HP-SD (50 W, 8-10 s) and MP-MD (25 W, 15-20 s) between adjacent applications (distance, ≤4 mm). Esophageal temperature was recorded using a multisensor probe (CIRCA S-CATH). Temperature data included magnitude of temperature rise, maximal temperature, time to maximal temperature, and time return to baseline. In swine, a similar experimental design compared the effect of HP-SD and MP-MD on patterns of esophageal injury. RESULTS: In 20 patients (68.9±5.8 years old; 60% persistent atrial fibrillation), 55 paired HP-SD and MP-MD applications were analyzed. The esophageal temperature dynamic profile was similar between HP-SD and MP-MD ablation strategies. Specifically, the magnitude of temperature rise (2.1 °C [1.4-3] versus 2.0 °C [1.5-3]; P=0.22), maximal temperature (38.4 °C [37.8-39.3] versus 38.5 °C [37.9-39.4]; P=0.17), time to maximal temperature (24.9±7.5 versus 26.3±6.8 s; P=0.1), and time of temperature to return to baseline (110±23.2 versus 111±25.1 s; P=0.86) were similar between HP-SD and MP-MD ablation strategies. In 6 swine, esophageal injury was qualitatively similar between HP-SD and MP-MD strategies. CONCLUSIONS: Esophageal temperature dynamics are similar between HP-SD and MP-MD RFA strategies and result in comparable esophageal tissue injury. Therefore, when using a HP-SD RFA strategy, the shorter application duration should not prompt shorter intervals between applications.


Subject(s)
Atrial Fibrillation/surgery , Body Temperature/physiology , Catheter Ablation/methods , Esophagus/physiopathology , Heart Conduction System/physiology , Aged , Atrial Fibrillation/physiopathology , Female , Follow-Up Studies , Humans , Male , Pulmonary Veins/surgery , Retrospective Studies , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...