Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Crohns Colitis ; 18(1): 121-133, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-37565754

ABSTRACT

BACKGROUND AND AIMS: Pain is a cardinal symptom in inflammatory bowel disease [IBD]. An important structure in the transduction of pain signalling is the myenteric plexus [MP]. Nevertheless, IBD-associated infiltration of the MP by immune cells lacks in-depth characterisation. Herein, we decipher intra- and periganglionic immune cell infiltrations in Crohn´s disease [CD] and ulcerative colitis [UC] and provide a comparison with murine models of colitis. METHODS: Full wall specimens of surgical colon resections served to examine immune cell populations by either conventional immuno-histochemistry or immunofluorescence followed by either bright field or confocal microscopy. Results were compared with equivalent examinations in various murine models of intestinal inflammation. RESULTS: Whereas the MP morphology was not significantly altered in IBD, we identified intraganglionic IBD-specific B cell- and monocyte-dominant cell infiltrations in CD. In contrast, UC-MPs were infiltrated by CD8+ T cells and revealed a higher extent of ganglionic cell apoptosis. With regard to the murine models of intestinal inflammation, the chronic dextran sulphate sodium [DSS]-induced colitis model reflected CD [and to a lesser extent UC] best, as it also showed increased monocytic infiltration as well as a modest B cell and CD8+ T cell infiltration. CONCLUSIONS: In CD, MPs were infiltrated by B cells and monocytes. In UC, mostly CD8+ cytotoxic T cells were found. The chronic DSS-induced colitis in the mouse model reflected best the MP-immune cell infiltrations representative for IBD.


Subject(s)
Colitis, Ulcerative , Colitis , Crohn Disease , Inflammatory Bowel Diseases , Animals , Mice , Colitis, Ulcerative/metabolism , Crohn Disease/metabolism , Myenteric Plexus/metabolism , Colitis/chemically induced , Neurotransmitter Agents/adverse effects , Pain , Inflammation
2.
Front Med (Lausanne) ; 10: 1228938, 2023.
Article in English | MEDLINE | ID: mdl-37692784

ABSTRACT

The intestinal mucosal surface forms one of the largest areas of the body, which is in direct contact with the environment. Co-ordinated sensory functions of immune, epithelial, and neuronal cells ensure the timely detection of noxious queues and potential pathogens and elicit proportional responses to mitigate the threats and maintain homeostasis. Such tuning and maintenance of the epithelial barrier is constantly ongoing during homeostasis and its derangement can become a gateway for systemic consequences. Although efforts in understanding the gatekeeping functions of immune cells have led the way, increasing number of studies point to a crucial role of the enteric nervous system in fine-tuning and maintaining this delicate homeostasis. The identification of immune regulatory functions of enteric neuropeptides and glial-derived factors is still in its infancy, but has already yielded several intriguing insights into their important contribution to the tight control of the mucosal barrier. In this review, we will first introduce the reader to the current understanding of the architecture of the enteric nervous system and the epithelial barrier. Next, we discuss the key discoveries and cellular pathways and mediators that have emerged as links between the enteric nervous, immune, and epithelial systems and how their coordinated actions defend against intestinal infectious and inflammatory diseases. Through this review, the readers will gain a sound understanding of the current neuro-immune-epithelial mechanisms ensuring intestinal barrier integrity and maintenance of intestinal homeostasis.

3.
Front Immunol ; 14: 1203903, 2023.
Article in English | MEDLINE | ID: mdl-37409125

ABSTRACT

A delicate balance between programmed cell death and proliferation of intestinal epithelial cells (IEC) exists in the gut to maintain homeostasis. Homeostatic cell death programs such as anoikis and apoptosis ensure the replacement of dead epithelia without overt immune activation. In infectious and chronic inflammatory diseases of the gut, this balance is invariably disturbed by increased levels of pathologic cell death. Pathological forms of cell death such as necroptosis trigger immune activation barrier dysfunction, and perpetuation of inflammation. A leaky and inflamed gut can thus become a cause of persistent low-grade inflammation and cell death in other organs of the gastrointestinal (GI) tract, such as the liver and the pancreas. In this review, we focus on the advances in the molecular and cellular understanding of programmed necrosis (necroptosis) in tissues of the GI tract. In this review, we will first introduce the reader to the basic molecular aspects of the necroptosis machinery and discuss the pathways leading to necroptosis in the GI system. We then highlight the clinical significance of the preclinical findings and finally evaluate the different therapeutic approaches that attempt to target necroptosis against various GI diseases. Finally, we review the recent advances in understanding the biological functions of the molecules involved in necroptosis and the potential side effects that may occur due to their systemic inhibition. This review is intended to introduce the reader to the core concepts of pathological necroptotic cell death, the signaling pathways involved, its immuno-pathological implications, and its relevance to GI diseases. Further advances in our ability to control the extent of pathological necroptosis will provide better therapeutic opportunities against currently intractable GI and other diseases.


Subject(s)
Gastrointestinal Diseases , Necroptosis , Humans , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Necrosis/pathology , Inflammation/pathology , Gastrointestinal Diseases/etiology
4.
Gut ; 72(6): 1155-1166, 2023 06.
Article in English | MEDLINE | ID: mdl-36261293

ABSTRACT

OBJECTIVE: Psen1 was previously characterised as a crucial factor in the pathogenesis of neurodegeneration in patients with Alzheimer's disease. Little, if any, is known about its function in the gut. Here, we uncovered an unexpected functional role of Psen1 in gut epithelial cells during intestinal tumourigenesis. DESIGN: Human colorectal cancer (CRC) and control samples were investigated for PSEN1 and proteins of theγ-secretase complex. Tumour formation was analysed in the AOM-DSS and Apc min/+ mouse models using newly generated epithelial-specific Psen1 deficient mice. Psen1 deficient human CRC cells were studied in a xenograft tumour model. Tumour-derived organoids were analysed for growth and RNA-Seq was performed to identify Psen1-regulated pathways. Tumouroids were generated to study EGFR activation and evaluation of the influence of prostanoids. RESULTS: PSEN1 is expressed in the intestinal epithelium and its level is increased in human CRC. Psen1-deficient mice developed only small tumours and human cancer cell lines deficient in Psen1 had a reduced tumourigenicity. Tumouroids derived from Psen1-deficient Apc min/+ mice exhibited stunted growth and reduced cell proliferation. On a molecular level, PSEN1 potentiated tumour cell proliferation via enhanced EGFR signalling and COX-2 production. Exogenous administration of PGE2 reversed the slow growth of PSEN1 deficient tumour cells via PGE2 receptor 4 (EP4) receptor signalling. CONCLUSIONS: Psen1 drives tumour development by increasing EGFR signalling via NOTCH1 processing, and by activating the COX-2-PGE2 pathway. PSEN1 inhibition could be a useful strategy in treatment of CRC.


Subject(s)
Colorectal Neoplasms , Signal Transduction , Humans , Mice , Animals , Cyclooxygenase 2/metabolism , Presenilin-1/genetics , Signal Transduction/physiology , Colorectal Neoplasms/pathology , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Disease Models, Animal , ErbB Receptors/metabolism
5.
Lab Chip ; 21(20): 3963-3978, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34636813

ABSTRACT

Organ-on-chip (OoC) systems have become a promising tool for personalized medicine and drug development with advantages over conventional animal models and cell assays. However, the utility of OoCs in industrial settings is still limited, as external pumps and tubing for on-chip fluid transport are dependent on error-prone, manual handling. Here, we present an on-chip pump for OoC and Organ-Disc systems, to perfuse media without external pumps or tubing. Peristaltic pumping is implemented through periodic compression of a flexible pump layer. The disc-shaped, microfluidic module contains four independent systems, each lined with endothelial cells cultured under defined, peristaltic perfusion. Both cell viability and functionality were maintained over several days shown by supernatant analysis and immunostaining. Integrated, on-disc perfusion was further used for cytokine-induced cell activation with physiologic cell responses and for whole blood perfusion assays, both demonstrating the versatility of our system for OoC applications.


Subject(s)
Endothelial Cells , Lab-On-A-Chip Devices , Animals , Culture Media , Microfluidics , Perfusion
6.
Cells ; 10(9)2021 08 30.
Article in English | MEDLINE | ID: mdl-34571902

ABSTRACT

Inflammatory bowel diseases (IBD) are characterized by chronic dysregulation of immune homeostasis, epithelial demise, immune cell activation, and microbial translocation. Each of these processes leads to proinflammatory changes via the release of cytokines, damage-associated molecular patterns (DAMPs), and pathogen-associated molecular patterns (PAMPs), respectively. The impact of these noxious agents on the survival and function of the enteric nervous system (ENS) is poorly understood. Here, we show that in contrast to an expected decrease, experimental as well as clinical colitis causes an increase in the transcript levels of enteric neuronal and glial genes. Immunostaining revealed an elevated neuronal innervation of the inflamed regions of the gut mucosa. The increase was seen in models with overt damage to epithelial cells and models of T cell-induced colitis. Transcriptomic data from treatment naïve pediatric IBD patients also confirmed the increase in the neuroglial genes and were replicated on an independent adult IBD dataset. This induction in the neuroglial genes was transient as levels returned to normal upon the induction of remission in both mouse models as well as colitis patients. Our data highlight the dynamic and robust nature of the enteric nervous system in colitis and open novel questions on its regulation.


Subject(s)
Colitis/pathology , Enteric Nervous System/pathology , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/innervation , Neurons/pathology , Transcriptome , Animals , Colitis/etiology , Colitis/metabolism , Enteric Nervous System/immunology , Enteric Nervous System/metabolism , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Mice , Neurons/immunology , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...