Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 108(3-2): 036106, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37849206

ABSTRACT

We reply to Whitelam's Comment [Phys. Rev. E 108, 036105 (2023)2470-004510.1103/PhysRevE.108.036105] on our paper [Phys. Rev. E 100, 020103(R) (2019)2470-004510.1103/PhysRevE.100.020103] where we compute the exact large deviation (LD) statistics of a wide class of observables in the rule 54 cellular automaton. Using some heuristic arguments, Whitelam states that despite the fact that the LD functions we compute display singular behavior, this is not indicative of a LD phase transition or of dynamical phase coexistence. Here, we refute this observation and confirm that the (standard) interpretation of our exact results stands.

2.
Phys Rev Lett ; 128(10): 100601, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35333089

ABSTRACT

Is a spontaneous perpetual reversal of the arrow of time possible? The out-of-time-ordered correlator (OTOC) is a standard measure of irreversibility, quantum scrambling, and the arrow of time. The question may be thus formulated more precisely and conveniently: can spatially ordered perpetual OTOC oscillations exist in many-body systems? Here we give a rigorous lower bound on the amplitude of OTOC oscillations in terms of a strictly local dynamical algebra allowing for identification of systems that are out-of-time-ordered (OTO) crystals. While OTOC oscillations are possible for few-body systems, due to the spatial order requirement OTO crystals cannot be achieved by effective single or few body dynamics, e.g., a pendulum or a condensate. Rather they signal perpetual motion of quantum scrambling. It is likewise shown that if a Hamiltonian satisfies this novel algebra, it has an exponentially large number of local invariant subspaces, i.e., Hilbert space fragmentation. Crucially, the algebra, and hence the OTO crystal, are stable to local unitary and dissipative perturbations. A Creutz ladder is shown to be an OTO crystal, which thus perpetually reverses its arrow of time.

3.
Phys Rev E ; 100(2-1): 020103, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31574613

ABSTRACT

We study the statistical properties of the long-time dynamics of the rule 54 reversible cellular automaton (CA), driven stochastically at its boundaries. This CA can be considered as a discrete-time and deterministic version of the Fredrickson-Andersen kinetically constrained model (KCM). By means of a matrix product ansatz, we compute the exact large deviation cumulant generating functions for a wide range of time-extensive observables of the dynamics, together with their associated rate functions and conditioned long-time distributions over configurations. We show that for all instances of boundary driving the CA dynamics occurs at the point of phase coexistence between competing active and inactive dynamical phases, similar to what happens in more standard KCMs. We also find the exact finite size scaling behavior of these trajectory transitions, and provide the explicit "Doob-transformed" dynamics that optimally realizes rare dynamical events.

4.
Nat Commun ; 10(1): 1730, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988312

ABSTRACT

The assumption that quantum systems relax to a stationary state in the long-time limit underpins statistical physics and much of our intuitive understanding of scientific phenomena. For isolated systems this follows from the eigenstate thermalization hypothesis. When an environment is present the expectation is that all of phase space is explored, eventually leading to stationarity. Notable exceptions are decoherence-free subspaces that have important implications for quantum technologies and have so far only been studied for systems with a few degrees of freedom. Here we identify simple and generic conditions for dissipation to prevent a quantum many-body system from ever reaching a stationary state. We go beyond dissipative quantum state engineering approaches towards controllable long-time non-stationarity typically associated with macroscopic complex systems. This coherent and oscillatory evolution constitutes a dissipative version of a quantum time crystal. We discuss the possibility of engineering such complex dynamics with fermionic ultracold atoms in optical lattices.

5.
Phys Rev Lett ; 123(26): 260401, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31951440

ABSTRACT

Nonstationary longtime dynamics was recently observed in a driven two-component Bose-Einstein condensate coupled to an optical cavity [N. Dogra, M. Landini, K. Kroeger, L. Hruby, T. Donner, and T. Esslinger, arXiv:1901.05974] and analyzed in mean-field theory. We solve the underlying model in the thermodynamic limit and show that this system is always dynamically unstable-even when mean-field theory predicts stability. Instabilities always occur in higher-order correlation functions leading to squeezing and entanglement induced by cavity dissipation. The dynamics may be understood as the formation of a dissipative time crystal. We use perturbation theory for finite system sizes to confirm the nonstationary behavior.

6.
Phys Rev E ; 95(5-1): 052141, 2017 May.
Article in English | MEDLINE | ID: mdl-28618579

ABSTRACT

Based on generalization and extension of our previous work [Phys. Rev. Lett. 112, 067201 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.067201] to multiple independent Markovian baths we will compute the charge and spin current statistics of the open Hubbard model with weak system-bath coupling up to next-to-leading order in the coupling parameter. Only the next-to-leading and higher orders depend on the Hubbard interaction parameter. The physical results are related to those for the XXZ model in the analogous setup implying a certain universality, which potentially holds in this class of nonequilibrium models.

7.
Phys Rev Lett ; 112(6): 067201, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24580705

ABSTRACT

We study the full counting statistics for interacting quantum many-body spin systems weakly coupled to the environment. In the leading order in the system-bath coupling, we derive exact spin current statistics for a large class of parity symmetric spin-1/2 systems driven by a pair of Markovian baths with local coupling operators. Interestingly, in this class of systems the leading-order current statistics are universal and do not depend on details of the Hamiltonian. Furthermore, in the specific case of a symmetrically boundary driven anisotropic Heisenberg (XXZ) spin-1/2 chain, we explicitly derive the third-order nonlinear corrections to the current statistics.

SELECTION OF CITATIONS
SEARCH DETAIL
...