Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 417: 113623, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34624423

ABSTRACT

In mammalians, social life and circadian rhythms find their neurobiological basis in a network that includes the dopaminergic system. The malfunctioning of dopamine pathways can lead to various disorders such as Attention-Deficit/Hyperactivity and Obsessive/compulsive disorders. A useful research approach is to exploit animal models that carry a functional silencing of SLC6A3 gene, encoding the dopamine transporter (DAT). Hyperactivity, working memory deficits, and asocial tendencies are core features in truncated-DAT rats, for example. We investigated how inheritance and maternal caring style influence circadian rhythms and social behaviours in DAT heterozygous (HET) rats, belonging to four groups: Mat-P, Mat-M, Mix-P, and Mix-M (Mat label stands for care from wild-type dam, Mix label stands for care by heterozygous dam; M label stands for maternal wild-DAT and P label stands for paternal wild-DAT). In Experiment 1, we monitored 24/7 the spontaneous locomotor activity of peri-adolescent subjects. Hyperactivity occurred only in P-asset subjects (with maternal-origin truncated-DAT allele) at specific bins of the day. In Experiment 2, we observed social interactions of the same rats. Mix-M subjects (raised by HET dams and/or inheriting the wild-DAT allele from mothers) tend to interact with all rats; Mat-P (cared by WT dams and/or inheriting the truncated-DAT allele from mothers) seem to be ignored, when acting as stimulus subjects. Overall, results confirm complex modulations for circadian cycle and social life: flexible DAT expression in HET subjects depends on epigenetic combinations of parental inheritance and early experiential factors. Once confirmed, these data could shed light on trans-generational contributions to dopaminergic-related disorders.


Subject(s)
Circadian Rhythm/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/metabolism , Epigenesis, Genetic/genetics , Maternal Behavior/physiology , Social Behavior , Animals , Disease Models, Animal , Dopamine Plasma Membrane Transport Proteins/genetics , Male , Paternal Behavior/physiology , Rats
2.
Front Behav Neurosci ; 15: 637074, 2021.
Article in English | MEDLINE | ID: mdl-33994967

ABSTRACT

While both risk-taking and avoidant behaviors are necessary for survival, their imbalanced expression can lead to impulse-control and anxiety disorders, respectively. In laboratory rodents, the conflict between risk proneness and anxiety can be studied by using their innate fear of heights. To explore this aspect in detail and investigate venturesome behavior, here we used a "Himalayan Bridge," a rat-adapted version of the suspended wire bridge protocol originally developed for mice. The apparatus is composed of two elevated scaffolds connected by bridges of different lengths and stability at 1 m above a foam rubber-covered floor. Rats were allowed to cross the bridge to reach food, and crossings, pawslips, turnabouts, and latencies to cross were measured. Given the link between risky behavior and adolescence, we used this apparatus to investigate the different responses elicited by a homecage mate on the adolescent development of risk-taking behavior. Thus, 24 wild-type (WT) subjects were divided into three different housing groups: WT rats grown up with WT adult rats; control WT adolescent rats (grown up with WT adolescents), which showed a proclivity to risk; and WT rats grown up with an adult rat harboring a truncated mutation for their dopamine transporter (DAT). This latter group exhibited risk-averse responses reminiscent of lower venturesomeness. Our results suggest that the Himalayan Bridge may be useful to investigate risk perception and seeking; thus, it should be included in the behavioral phenotyping of rat models of psychiatric disorders and cognitive dysfunctions.

3.
Article in English | MEDLINE | ID: mdl-33652987

ABSTRACT

Previous studies have shown multiple biological properties of Moringa oleifera, a plant native to Africa and Asia. In the present study, potential physiological properties of microvesicles extracted from Moringa oleifera seeds were assessed. For this purpose, we investigated behavioral profile and hematological parameters in a recent rat model characterized by dysregulation in dopamine transporter, a key regulator of dopaminergic system. Experimental design consisted of male Wistar-DAT rats aged between two and four months: wild-type (WT) (n = 5) and heterozygous (DATHET) (n = 4) control groups, which drank tap water; WT (n = 5) and DATHET (n = 6) groups which drank a solution of Moringa microvesicles and water (2: 68 mL per day), which was orally administered for two months. Rats were monitored for spontaneous locomotor activity on a 24/7 basis. In the early lit hours, treated DATHET subjects showed higher locomotor activity, proposing a sleep-delay effect of Moringa. In forced swimming test, WT subjects who took Moringa exhibited more depressive behavior. In DATHET rats, Moringa seemed to potentiate the struggle to find a way out, counteracting an initial panic. Hemoglobin and hematocrit underwent opposite changes in either genotype, supporting the opposite effects on behavioral phenotype observed. Future work is clearly needed to further explore these preliminary profiles.


Subject(s)
Moringa oleifera , Africa , Animals , Asia , Dopamine Plasma Membrane Transport Proteins , Male , Plant Extracts/toxicity , Plant Leaves , Rats , Rats, Wistar , Seeds
4.
Behav Brain Res ; 393: 112746, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32502514

ABSTRACT

Most behavioral studies on animals focus on observation of individual subjects. Current paradigms of sociability set aside the social-operant dimension, i.e. acting in favor of another conspecific. We focused on prosocial behavior and reciprocity of male, adult Wild-Type (WT) and Heterozygous (HET) rats for the dopamine-transporter (DAT) gene. METHOD: The experiment consisted of 24 rats, of WT (n = 12) and HET (n = 12) genotypes. During training, rats were daily introduced, individually, into an apparatus hosting a suspended syringe, which they learnt to push in order to obtain food therein. Then, twice daily along several weeks, we introduced two rats separated by a grid in the same structure: by syringe-pushing, each subject had the opportunity to donate and receive donations of food. We tested pairs with similar versus different genotype. Eventually, we replaced food reward with polystyrene pieces, to understand if they pushed for actual reward or like a habit. RESULTS: In general, WT rats had better performance, regardless of reward type, than HET ones. When we crossed partner rats' genotype (WT-HET pairs), WT rats pushed at peak levels, regardless of food pellet received back (in fact, HET companions pushed less). Couples of WT rats achieved better results than HET ones even when polystyrene, instead of food, was used. Thus,WT rats seem to be a better model for altruistic behavior than HET ones. For this reason, HET rats could represent a model for studies on altered prosocial behavior, to understand the role of DAT gene for impaired social mechanisms.


Subject(s)
Altruism , Behavior, Animal/physiology , Dopamine Plasma Membrane Transport Proteins/genetics , Social Behavior , Animals , Animals, Genetically Modified , Heterozygote , Rats
5.
Dev Psychobiol ; 62(4): 505-518, 2020 05.
Article in English | MEDLINE | ID: mdl-31599465

ABSTRACT

There is considerable interest in understanding what makes an individual vulnerable or resilient to the deleterious effects of stressful events. From candidate genes, dopamine (DA) and dopamine transporter (DAT) have been linked to anxiety, depression, and post-traumatic stress disorder. We investigated role of DAT using the new DAT heterozygous (DAT-HET) and homozygous mutant (DAT-KO) rat models of hyperdopaminergia. We studied the impact of two breeding conditions in spontaneous locomotor behavior of female rats. The classical colony, through mating DAT-HET males × DAT-HET females (breeding HET-HET), was used. A second WT colony was derived and maintained (breeding WT-WT). Additionally, a subgroup of rats was bred through mating DAT-KO males × WT females (atypical HET, breeding KO-WT). We studied the effects of genotype and its interaction with maternal care (depending by breeding condition). HET-HET breeding led to reduced activity in HET females compared to WT rats (from WT-WT breeding). However, HET females from KO-WT breeding did not differ so much from WT rats (WT-WT breeding). The maternal-care impact was then confirmed: HET mothers (breeding HET-HET) showed reduced liking/grooming of pups and increased digging away from nest, compared to WT mothers (breeding WT-WT). In their female offspring (HET, breeding HET-HET vs. WT, breeding WT-WT), isolation plus wet bedding induced higher and more persistent impact on activity of HET rats, even when the stressor was removed. Our results highlight the importance of epigenetic factors (e.g., maternal care) in responses to stress expressed by offspring at adulthood, quite independently of genotype. DAT hypofunction could determinate vulnerability to stressful agents via altered maternal care.


Subject(s)
Circadian Rhythm/physiology , Dopamine Plasma Membrane Transport Proteins/genetics , Epigenesis, Genetic/physiology , Gene-Environment Interaction , Locomotion/physiology , Maternal Behavior/physiology , Stress, Psychological/physiopathology , Animals , Behavior, Animal , Disease Susceptibility , Female , Heterozygote , Male , Rats, Transgenic , Rats, Wistar
6.
Synapse ; 74(4): e22138, 2020 04.
Article in English | MEDLINE | ID: mdl-31587367

ABSTRACT

We aimed at the further characterization of rats in which SERT gene silencing was achieved by hippocampal injection of a lentiviral vector, carrying three si-RNA to block SERT mRNA at 66% of normal levels. Improved self-control and reduced restlessness were already demonstrated in these rats. Present further studies consisted of male adult rats, bilaterally inoculated within the hippocampus; control rats received lentivirus particles inactivated with heat. Both groups were maintained in isolation for 5 months, starting from inoculation. Neurochemical changes were studied by proton magnetic resonance spectroscopy (1H-MRS): we found increased hippocampal viability and bioenergetic potential; however, rats showed a behaviorally depressive pattern, also characterized by enhanced affiliation. Based on the extent of such effects, the whole lenti-SERT group was divided into two subgroups, termed intermediate- and extreme- phenotype profiles. While all rats had a widespread modification within dorsal/ventral striatum, amygdala, and hypothalamus, only the former subgroup showed an involvement of Raphé medialis, while, for the latter subgroup, an increase of SERT within hippocampus was unexpectedly caused. Within the less-affected "intermediate" rats, hippocampal 5-HT7 receptors were down-modulated, and also similarly within substantia nigra, septum, and neocortex. This picture demonstrates that additional rather than fewer neurobiological changes accompany a lower phenotypic expression. Overall, tapping hippocampal SERT affected the balance between habits versus strategies of coping by promoting morphogenetic processes indicative of a serotonergic fiber plasticity. Supplementary studies about serotonergic dynamics and neurogenesis within fronto-striatal circuits are needed.


Subject(s)
Hippocampus/metabolism , Maze Learning , RNA-Binding Proteins/genetics , Social Behavior , Animals , Gene Silencing , Hippocampus/cytology , Hippocampus/physiology , Lentivirus/genetics , Male , Neuronal Plasticity , Neurons/drug effects , Neurons/metabolism , Proton Magnetic Resonance Spectroscopy , RNA-Binding Proteins/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...