Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 208(3): 1115-1130, 2018 03.
Article in English | MEDLINE | ID: mdl-29321173

ABSTRACT

The Zap1 transcription factor of Saccharomyces cerevisiae is a key regulator in the genomic responses to zinc deficiency. Among the genes regulated by Zap1 during zinc deficiency is the autophagy-related gene ATG41 Here, we report that Atg41 is required for growth in zinc-deficient conditions, but not when zinc is abundant or when other metals are limiting. Consistent with a role for Atg41 in macroautophagy, we show that nutritional zinc deficiency induces autophagy and that mutation of ATG41 diminishes that response. Several experiments indicated that the importance of ATG41 function to growth during zinc deficiency is not because of its role in macroautophagy, but rather is due to one or more autophagy-independent functions. For example, rapamycin treatment fully induced autophagy in zinc-deficient atg41Δ mutants but failed to improve growth. In addition, atg41Δ mutants showed a far more severe growth defect than any of several other autophagy mutants tested, and atg41Δ mutants showed increased Heat Shock Factor 1 activity, an indicator of protein homeostasis stress, while other autophagy mutants did not. An autophagy-independent function for ATG41 in sulfur metabolism during zinc deficiency was suggested by analyzing the transcriptome of atg41Δ mutants during the transition from zinc-replete to -deficient conditions. Analysis of sulfur metabolites confirmed that Atg41 is needed for the normal accumulation of methionine, homocysteine, and cysteine in zinc-deficient cells. Therefore, we conclude that Atg41 plays roles in both macroautophagy and sulfur metabolism during zinc deficiency.


Subject(s)
Autophagy , Carrier Proteins/genetics , Carrier Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sulfur/metabolism , Zinc/deficiency , Amino Acid Sequence , Carrier Proteins/chemistry , Mutation , Phenotype , Saccharomyces cerevisiae Proteins/chemistry , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism
2.
J Virol ; 88(11): 5977-86, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24623411

ABSTRACT

UNLABELLED: Successful replication of influenza virus requires the coordinated expression of viral genes and replication of the genome by the viral polymerase, composed of the subunits PA, PB1, and PB2. Polymerase activity is regulated by both viral and host factors, yet the mechanisms of regulation and how they contribute to viral pathogenicity and tropism are poorly understood. To characterize these processes, we created a series of mutants in the 627 domain of the PB2 subunit. This domain contains a conserved "P[F/P]AAAPP" sequence motif and the well-described amino acid 627, whose identity regulates host range. A lysine present at position 627 in most mammalian viral isolates creates a basic face on the domain surface and confers high-level activity in humans compared to the glutamic acid found at this position in avian isolates. Mutation of the basic face or the P[F/P]AAAPP motif impaired polymerase activity, assembly of replication complexes, and viral replication. Most of these residues are required for general polymerase activity, whereas PB2 K586 and R589 were preferentially required for function in human versus avian cells. Thus, these data identify residues in the 627 domain and other viral proteins that regulate polymerase activity, highlighting the importance of the surface charge and structure of this domain for virus replication and host adaptation. IMPORTANCE: Influenza virus faces barriers to transmission across species as it emerges from its natural reservoir in birds to infect mammals. The viral polymerase is an important regulator of this process and undergoes discrete changes to adapt to replication in mammals. Many of these changes occur in the polymerase subunit PB2. Here we describe the systematic analysis of a key region in PB2 that controls species-specific polymerase activity. We report the importance of conserved residues that contribute to the overall charge of the protein as well as those that likely affect protein structure. These findings provide further insight into the molecular events dictating species-specific polymerase function and viral replication.


Subject(s)
Gene Expression Regulation, Viral/physiology , Models, Molecular , Orthomyxoviridae/enzymology , Viral Proteins/genetics , Virus Replication/genetics , Amino Acid Motifs/genetics , Animals , Blotting, Western , Cell Line, Tumor , Cell Nucleus/metabolism , Dogs , Fluorescent Antibody Technique , Gene Expression Regulation, Viral/genetics , Humans , Immunoprecipitation , Madin Darby Canine Kidney Cells , Mutagenesis , Plasmids/genetics , Protein Structure, Tertiary , Viral Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...