Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
CEAS Aeronaut J ; 13(4): 847-860, 2022.
Article in English | MEDLINE | ID: mdl-35855846

ABSTRACT

Distributed electric propulsion (DEP) offers new options in aircraft design. Besides the optimization of the wing, another area of optimization is the vertical tail plane (VTP) and yaw control. The large number of engines significantly relaxes the one-engine-inoperative (OEI) case during take-off, which is mostly the sizing case for the VTP. This offers the possibility to reduce the VTP and rudder size to a certain amount. Also, the dynamics of electric motors offer the possibility to use differential thrust for yaw control. This can compensate at least some of the reduced rudder effectiveness coming from the smaller VTP size. In the framework of the German nationally funded project SynergIE, different aircraft designs of a hybrid-electric regional aircraft were investigated. Three aircraft concepts with 2, 6 and 12 propellers were designed in the project, for which reasonable minimum VTP sizes were investigated. For the 12-propeller aircraft, the investigations showed that the VTP could be reduced by 50%, still allowing the compensation of OEI during take-off and the generation of sideslip angle during crosswind operations. This reduction in VTP size results in a reduction of the block fuel by about 4%. For the 12-engine aircraft, a 6-degrees-of-freedom simulation model was developed including flight control laws for yaw control using the rudder and differential thrust. Virtual flight tests were performed in a full-flight simulator. The tests generally showed a good agreement with the theoretical results from the handling quality analysis but also outlined deficiencies in aircraft handling at low speed with full flaps. The use of a flight simulator at this early stage of aircraft design has proven to be a useful tool to investigate such unconventional designs.

2.
Sci Rep ; 6: 28104, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27323913

ABSTRACT

Airline pilots and similar professions require reliable spatial cognition abilities, such as mental imagery of static and moving three-dimensional objects in space. A well-known task to investigate these skills is the Shepard and Metzler mental rotation task (SMT), which is also frequently used during pre-assessment of pilot candidates. Despite the intuitive relationship between real-life spatial cognition and SMT, several studies have challenged its predictive value. Here we report on a novel instrument interpretation task (IIT) based on a realistic attitude indicator used in modern aircrafts that was designed to bridge the gap between the abstract SMT and a cockpit environment. We investigated 18 professional airline pilots using fMRI. No significant correlation was found between SMT and IIT task accuracies. Contrasting both tasks revealed higher activation in the fusiform gyrus, angular gyrus, and medial precuneus for IIT, whereas SMT elicited significantly stronger activation in pre- and supplementary motor areas, as well as lateral precuneus and superior parietal lobe. Our results show that SMT skills per se are not sufficient to predict task accuracy during (close to) real-life instrument interpretation. While there is a substantial overlap of activation across the task conditions, we found that there are important differences between instrument interpretation and non-aviation based mental rotation.


Subject(s)
Cognition/physiology , Parietal Lobe/physiology , Pilots , Spatial Navigation/physiology , Adult , Humans , Intelligence Tests , Magnetic Resonance Imaging , Male , Mental Competency , Motor Cortex/physiology , Neurobiology , Psychoanalytic Interpretation , Rotation , Task Performance and Analysis , Temporal Lobe
SELECTION OF CITATIONS
SEARCH DETAIL
...