Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165633, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31821850

ABSTRACT

The major clinical manifestation of the Primary Hyperoxalurias (PH) is increased production of oxalate, as a consequence of genetic mutations that lead to aberrant glyoxylate and hydroxyproline metabolism. Hyperoxaluria can lead to the formation of calcium-oxalate kidney stones, nephrocalcinosis and renal failure. Current therapeutic approaches rely on organ transplants and more recently modifying the pathway of oxalate synthesis using siRNA therapy. We have recently reported that the metabolism of trans-4-hydroxy-L-proline (Hyp), an amino acid derived predominantly from collagen metabolism, is a significant source of oxalate production in individuals with PH2 and PH3. Thus, the first enzyme in the Hyp degradation pathway, hydroxyproline dehydrogenase (HYPDH), represents a promising therapeutic target for reducing endogenous oxalate production in these individuals. This is supported by the observation that individuals with inherited mutations in HYPDH (PRODH2 gene) have no pathological consequences. The creation of mouse models that do not express HYPDH will facilitate research evaluating HYPDH as a target. We describe the phenotype of the Prodh2 knock out mouse model and show that the lack of HYPDH in PH mouse models results in lower levels of urinary oxalate excretion, consistent with our previous metabolic tracer and siRNA-based knockdown studies. The double knockout mouse, Grhpr KO (PH2 model) and Prodh2 KO, prevented calcium-oxalate crystal deposition in the kidney, when placed on a 1% Hyp diet. These observations support the use of the Grhpr KO mice to screen HYPDH inhibitors in vivo. Altogether these data support HYPDH as an attractive therapeutic target for PH2 and PH3 patients.


Subject(s)
Glycolates/metabolism , Glycolates/urine , Hydroxyproline/metabolism , Hyperoxaluria, Primary/metabolism , Oxalates/metabolism , Oxalates/urine , Oxidoreductases/metabolism , Amino Acid Sequence , Animals , Base Sequence , Calcium/metabolism , Disease Models, Animal , Female , Humans , Kidney/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Proline Oxidase/metabolism
2.
Biochim Biophys Acta ; 1862(2): 233-9, 2016 02.
Article in English | MEDLINE | ID: mdl-26655602

ABSTRACT

Excessive endogenous oxalate synthesis can result in calcium oxalate kidney stone formation and renal failure. Hydroxyproline catabolism in the liver and kidney contributes to endogenous oxalate production in mammals. To quantify this contribution we have infused Wt mice, Agxt KO mice deficient in liver alanine:glyoxylate aminotransferase, and Grhpr KO mice deficient in glyoxylate reductase, with (13)C5-hydroxyproline. The contribution of hydroxyproline metabolism to urinary oxalate excretion in Wt mice was 22±2%, 42±8% in Agxt KO mice, and 36%±9% in Grhpr KO mice. To determine if blocking steps in hydroxyproline and glycolate metabolism would decrease urinary oxalate excretion, mice were injected with siRNA targeting the liver enzymes glycolate oxidase and hydroxyproline dehydrogenase. These siRNAs decreased the expression of both enzymes and reduced urinary oxalate excretion in Agxt KO mice, when compared to mice infused with a luciferase control preparation. These results suggest that siRNA approaches could be useful for decreasing the oxalate burden on the kidney in individuals with Primary Hyperoxaluria.


Subject(s)
Alcohol Oxidoreductases/genetics , Hydroxyproline/metabolism , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/therapy , Proline Oxidase/metabolism , RNAi Therapeutics , Alcohol Oxidoreductases/metabolism , Animals , Disease Models, Animal , Hyperoxaluria, Primary/metabolism , Liver/enzymology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Oxalates/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , RNAi Therapeutics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...