Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33711440

ABSTRACT

To characterise the effect of two common induction agents, propofol and alfaxalone, on mean arterial blood pressure (MAP) and heart rate (HR), we equipped 19 adult South American rattlesnakes (Crotalus durissus) with an indwelling arterial catheter approximately 24 h prior to recording of baseline resting values. Then, seven snakes received alfaxalone (15 mg kg-1) intravascularly (IV) through the catheter, while groups two and three (both n = 6) received propofol (15 mg kg-1 IV). The first two groups were not handled, while the group 3 was manually restrained for 2 min for a mock injection of 0.2 ml saline into the ventral tail vein. Baseline HR was similar in all groups and handling caused a significant tachycardia (p = 0.031) in group three. When given IV to undisturbed animals, both propofol and alfaxalone induced a significant increase in HR (p = 0.0022 and p = 0.0045, respectively) lasting approximately 30 min, but with values only significantly exceeding baseline for the first 5 min for propofol and the first 10 min with alfaxalone. Handling caused a significant increase in MAP (p = 0.0313). Propofol did not affect MAP (p = 0.1064), while alfaxalone caused a marked hypertension (although only significant at 2 min; p = 0.031). Manual restraint significantly increases both HR and MAP, which may lead to a masking of true cardiovascular effects of anaesthetic agents.


Subject(s)
Anesthetics/pharmacology , Crotalus/metabolism , Pregnanediones/pharmacology , Propofol/pharmacology , Animals , Blood Pressure/drug effects , Heart Rate/drug effects
2.
J Exp Biol ; 219(Pt 3): 457-63, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26643090

ABSTRACT

Giraffes--the tallest extant animals on Earth--are renowned for their high central arterial blood pressure, which is necessary to secure brain perfusion. Arterial pressure may exceed 300 mmHg and has historically been attributed to an exceptionally large heart. Recently, this has been refuted by several studies demonstrating that the mass of giraffe heart is similar to that of other mammals when expressed relative to body mass. It thus remains unexplained how the normal-sized giraffe heart generates such massive arterial pressures. We hypothesized that giraffe hearts have a small intraventricular cavity and a relatively thick ventricular wall, allowing for generation of high arterial pressures at normal left ventricular wall tension. In nine anaesthetized giraffes (495±38 kg), we determined in vivo ventricular dimensions using echocardiography along with intraventricular and aortic pressures to calculate left ventricular wall stress. Cardiac output was also determined by inert gas rebreathing to provide an additional and independent estimate of stroke volume. Echocardiography and inert gas-rebreathing yielded similar cardiac outputs of 16.1±2.5 and 16.4±1.4 l min(-1), respectively. End-diastolic and end-systolic volumes were 521±61 ml and 228±42 ml, respectively, yielding an ejection fraction of 56±4% and a stroke volume of 0.59 ml kg(-1). Left ventricular circumferential wall stress was 7.83±1.76 kPa. We conclude that, relative to body mass, a small left ventricular cavity and a low stroke volume characterizes the giraffe heart. The adaptations result in typical mammalian left ventricular wall tensions, but produce a lowered cardiac output.


Subject(s)
Cardiac Output , Giraffes/physiology , Stroke Volume , Ventricular Function , Animals , Blood Pressure , Echocardiography/veterinary , Male
3.
Vet Anaesth Analg ; 42(4): 386-93, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25174935

ABSTRACT

OBJECTIVE: To characterize the impact of mechanical positive pressure ventilation on heart rate (HR), arterial blood pressure, blood gases, lactate, glucose, sodium, potassium and calcium concentrations in rattlesnakes during anesthesia and the subsequent recovery period. STUDY DESIGN: Prospective, randomized trial. ANIMALS: Twenty one fasted adult South American rattlesnakes (Crotalus durissus terrificus). METHODS: Snakes were anesthetized with propofol (15 mg kg(-1)) intravenously, endotracheally intubated and assigned to one of four ventilation regimens: Spontaneous ventilation, or mechanical ventilation at a tidal volume of 30 mL kg(-1) at 1 breath every 90 seconds, 5 breaths minute(-1), or 15 breaths minute(-1). Arterial blood was collected from indwelling catheters at 30, 40, and 60 minutes and 2, 6, and 24 hours following induction of anesthesia and analyzed for pH, PaO2, PaCO2, and selected variables. Mean arterial blood pressure (MAP) and HR were recorded at 30, 40, 60 minutes and 24 hours. RESULTS: Spontaneous ventilation and 1 breath every 90 seconds resulted in a mild hypercapnia (PaCO2 22.4 ± 4.3 mmHg [3.0 ± 0.6 kPa] and 24.5 ± 1.6 mmHg [3.3 ± 0.2 kPa], respectively), 5 breaths minute(-1) resulted in normocapnia (14.2 ± 2.7 mmHg [1.9 ± 0.4 kPa]), while 15 breaths minute(-1) caused marked hypocapnia (8.2 ± 2.5 mmHg [1.1 ± 0.3 kPa]). Following recovery, blood gases of the four groups were similar from 2 hours. Anesthesia, independent of ventilation was associated with significantly elevated glucose, lactate and potassium concentrations compared to values at 24 hours (p < 0.0001). MAP increased significantly with increasing ventilation frequency (p < 0.001). HR did not vary among regimens. CONCLUSIONS AND CLINICAL RELEVANCE: Mechanical ventilation had a profound impact on blood gases and blood pressure. The results support the use of mechanical ventilation with a frequency of 1-2 breaths minute(-1) at a tidal volume of 30 mL kg(-1) during anesthesia in fasted snakes.


Subject(s)
Anesthesia/veterinary , Crotalus/physiology , Respiration, Artificial/veterinary , Anesthetics, Intravenous/administration & dosage , Animals , Blood Gas Analysis/veterinary , Blood Pressure/physiology , Female , Heart Rate/physiology , Male , Propofol/administration & dosage , Prospective Studies
4.
J Exp Biol ; 217(Pt 24): 4275-8, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25394629

ABSTRACT

To address how the capacity for oxygen transport influences tolerance of acute warming in fishes, we investigated whether a reduction in haematocrit, by means of intra-peritoneal injection of the haemolytic agent phenylhydrazine, lowered the upper critical temperature of sea bass. A reduction in haematocrit from 42±2% to 20±3% (mean ± s.e.m.) caused a significant but minor reduction in upper critical temperature, from 35.8±0.1 to 35.1±0.2°C, with no correlation between individual values for haematocrit and upper thermal limit. Anaemia did not influence the rise in oxygen uptake between 25 and 33°C, because the anaemic fish were able to compensate for reduced blood oxygen carrying capacity with a significant increase in cardiac output. Therefore, in sea bass the upper critical temperature, at which they lost equilibrium, was not determined by an inability of the cardio-respiratory system to meet the thermal acceleration of metabolic demands.


Subject(s)
Acclimatization/physiology , Bass/physiology , Temperature , Anemia/chemically induced , Animals , Bass/metabolism , Cardiac Output , Hematocrit , Oxygen Consumption/drug effects , Phenylhydrazines/pharmacology
5.
Article in English | MEDLINE | ID: mdl-25139401

ABSTRACT

The Asian swamp eel (Monopterus albus, Zuiew 1793) is a facultative air-breathing fish with reduced gills. Previous studies have shown that gas exchange seems to occur across the epithelium of the buccopharyngeal cavity, the esophagus and the integument, resulting in substantial diffusion limitations that must be compensated by adaptations in others steps of the O2 transport system to secure adequate O2 delivery to the respiring tissues. We therefore investigated O2 binding properties of whole blood, stripped hemoglobin (Hb), two major isoHb components and the myoglobin (Mb) from M. albus. Whole blood was sampled using indwelling catheters for blood gas analysis and determination of O2 equilibrium curves. Hb was purified to assess the effects of endogenous allosteric effectors, and Mb was isolated from heart and skeletal muscle to determine its O2 binding properties. The blood of M. albus has a high O2 carrying capacity [hematocrit (Hct) of 42.4±4.5%] and binds O2 with an unusually high affinity (P50=2.8±0.4mmHg at 27°C and pH7.7), correlating with insensitivity of the Hb to the anionic allosteric effectors that normally decrease Hb-O2 affinity. In addition, Mb is present at high concentrations in both heart and muscle (5.16±0.99 and 1.08±0.19mg ∙ g wet tissue⁻¹, respectively). We suggest that the high Hct and high blood O2 affinity serve to overcome the low diffusion capacity in the relatively inefficient respiratory surfaces, while high Hct and Mb concentration aid in increasing the O2 flux from the blood to the muscles.


Subject(s)
Fish Proteins/metabolism , Hemoglobins/metabolism , Models, Biological , Myoglobin/metabolism , Oxygen Consumption , Oxygen/blood , Smegmamorpha/physiology , Algorithms , Allosteric Regulation , Animals , Aquaculture , Biological Transport , Fish Proteins/blood , Fish Proteins/isolation & purification , Hematocrit/veterinary , Hemoglobins/isolation & purification , Hydrogen-Ion Concentration , Kinetics , Muscle, Skeletal/metabolism , Myocardium/metabolism , Myoglobin/isolation & purification , Oxygen/metabolism , Protein Isoforms/blood , Protein Isoforms/isolation & purification , Protein Isoforms/metabolism , Respiratory Mucosa , Smegmamorpha/blood , Vietnam
6.
Article in English | MEDLINE | ID: mdl-22944727

ABSTRACT

Monopterus albus, a swamp eel inhabiting the freshwaters of South East Asia, relies on an extensive vascularisation of the buccal cavity, pharynx and anterior oesophagus for gas exchange, while the gills are much reduced. In the present study we describe the macro-circulation in the cephalic region and the vascularisation of the buccal cavity of M. albus using vascular fillings and micro-computed tomography (µCT). We also show that M. albus has the capacity to use the buccal cavity for aquatic gas exchange, being able to maintain normal arterial blood gas composition, blood pressure, heart rate and cardiac output throughout 10h of forced submergence. M. albus therefore can be characterised as a facultative air-breather. Because M. albus aestivates for many months in moist mud during the dry season we characterised in vivo cardiovascular function during exposure to anoxia as well as the effects of anoxia on in vitro contractility of strip preparations from atria and ventricle. Both studies revealed a low anoxia tolerance, rendering it unlikely that M. albus can survive prolonged exposure to anoxia.


Subject(s)
Heart Function Tests/methods , Heart/anatomy & histology , Heart/physiology , Smegmamorpha/anatomy & histology , Adaptation, Physiological , Air , Animals , Arteries/anatomy & histology , Arteries/physiology , Blood Gas Analysis , Blood Pressure , Epithelium/physiology , Epithelium/ultrastructure , Estivation/physiology , Female , Head/anatomy & histology , Head/blood supply , Heart Rate , Hypoxia/metabolism , In Vitro Techniques , Mouth Mucosa/physiology , Mouth Mucosa/ultrastructure , Myocardial Contraction , Oxygen/metabolism , Seasons , Smegmamorpha/physiology , Species Specificity
7.
J Physiol ; 545(1): 229-40, 2002 11 15.
Article in English | MEDLINE | ID: mdl-12433963

ABSTRACT

In rat skeletal muscle, Na(+)-K(+) pump activity increases dramatically in response to excitation (up to 20-fold) or beta(2)-agonists (2-fold), leading to a reduction in intracellular Na(+). This study examines the time course of these effects and whether they are due to an increased affinity of the Na(+)-K(+) pump for intracellular Na(+). Isolated rat soleus muscles were incubated at 30 (o)C in Krebs-Ringer bicarbonate buffer. The effects of direct electrical stimulation on (86)Rb(+) uptake rate and intracellular Na(+) concentration ([Na(+)](i)) were characterized in the subsequent recovery phase. [Na(+)](i) was varied using monensin or buffers with low Na(+). In the [Na(+)](i) range 21-69 mM, both the beta(2)-agonist salbutamol and electrical stimulation produced a left shift of the curves relating (86)Rb(+) uptake rate to [Na(+)](i). In the first 10 s after 1 or 10 s pulse trains of 60 Hz, [Na(+)](i) showed no increase, but (86)Rb(+) uptake rate increased by 22 and 86 %, respectively. Muscles excited in Na(+)-free Li(+)-substituted buffer and subsequently allowed to rest in standard buffer also showed a significant increase in (86)Rb(+) uptake rate and decrease in [Na(+)](i). Na(+) loading induced by monensin or electroporation also stimulated (86)Rb(+) uptake rate but, contrary to excitation, increased [Na(+)](i). The increase in the rate of (86)Rb(+) uptake elicited by electrical stimulation was abolished by ouabain, but not by bumetanide. The results indicate that excitation (like salbutamol) induces a rapid increase in the affinity of the Na(+)-K(+) pump for intracellular Na(+). This leads to a Na(+)-K(+) pump activation that does not require Na(+) influx, but possibly the generation of action potentials. This improves restoration of the Na(+)-K(+) homeostasis during work and optimizes excitability and contractile performance of the working muscle.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Albuterol/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Electric Stimulation , Electroporation , Female , In Vitro Techniques , Intracellular Membranes/metabolism , Male , Osmolar Concentration , Rats , Rats, Wistar , Rubidium/pharmacokinetics , Sodium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...