Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 79(11): 4508-4520, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37421357

ABSTRACT

BACKGROUND: Virus Yellows (VY), a disease caused by several aphid-borne viruses, is a major threat to the global sugar beet production. Following the ban of neonicotinoid-based seed treatments against aphids in Europe, increased efforts are needed to monitor and forecast aphid population spread during the sugar beet growing season. In particular, predicting aphid flight seasonal activity could allow anticipation of the timing and intensity of crop colonisation and contribute to the proper implementation of management methods. Forecasts should be made early enough to assess risk, but can be updated as the season progresses to refine management. Based on a long-term suction-trap dataset gathered between 1978 and 2014, we built and evaluated a set of models to predict the flight activity features of the main VY vector, Myzus persicae, at any location in the French sugar beet production area (c. 4 × 105 ha). Flight onset dates, length of flight period and cumulative abundance of flying aphids were predicted using climatic and land-use predictors as well as geographical position. RESULTS: Our predictions outperformed current models published in the literature. The importance of the predictor variables varied according to the predicted flight feature but winter and early spring temperature always played a major role. Forecasts based on temperature were made more accurate by adding predictors related to aphid winter reservoirs. In addition, updating the model parameters to take advantage of new weather data acquired during the season improved the flight forecast. CONCLUSION: Our models can be used as a tool for the mitigation in sugar beet crops. © 2023 Society of Chemical Industry.

2.
Insects ; 11(1)2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31861737

ABSTRACT

The degree of trophic specialization of interacting organisms impacts on the structure of ecological networks and has consequences for the regulation of crop pests. However, it remains difficult to assess in the case of parasitoids. Host ranges are often established by listing host records from various years and geographic areas in the literature. Here, we compared the actual hosts exploited at a local farm-scale by aphid parasitoids (Hymenoptera: Aphidiinae), to the available species listed as hosts for each parasitoid species. We sampled aphids and their parasitoids in cultivated and uncultivated areas in an experimental farm from April to November 2014 and thereafter used DNA-based data to determine whether a differentiation in sequences existed. Twenty-nine parasitoid species were found on 47 potential aphid hosts. Our results showed that the great majority of the parasitoid tested used fewer host species than expected according to data published in the literature and parasitized a limited number of hosts even when other potential hosts were available in the environment. Moreover, individuals of the most generalist species differed in their DNA sequences, according to the aphid species and/or the host plant species. At a local scale, only obligate or facultative specialist aphid parasitoids were detected. Local specialization has to be considered when implementing the use of such parasitoids in pest regulation within agroecosystems.

3.
Insects ; 10(12)2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31779157

ABSTRACT

Arctic ecosystems are subjected to strong environmental constraints that prevent both the colonization and development of many organisms. In Svalbard, few aphid species have established permanent populations. These high arctic aphid species have developed peculiar life-history traits such as shortened life cycles and reduced dispersal capacities. Here, we present data on the distribution and population genetics of Acyrthosiphon svalbardicum in Spitsbergen, the main island of the Svalbard archipelago, and compared its genetic structure with that of its close relative Acyrthosiphon brevicorne, sampled in the top of Scandinavian mainland. We found that A. svalbardicum is common but heterogeneously distributed along the west coast of Spitsbergen. We recorded this species up to 79°12', which constitutes the northernmost location for any aphid. Genetic structure examined using microsatellite markers showed more pronounced spatial differentiation in A. svalbardicum than in A. brevicorne populations, presumably due to reduced dispersal capacities in the former species. Although populations of A. brevicorne and A. svalbardicum were well-delineated at nuclear loci, they shared similar cytoplasmic DNA haplotypes as revealed by sequence analysis of two DNA barcodes. These results raise questions about whether these two taxa are different species, and the colonization sources and history of the Svalbard archipelago by A. svalbardicum.

4.
Insect Sci ; 26(5): 881-896, 2019 Oct.
Article in English | MEDLINE | ID: mdl-29513406

ABSTRACT

Insect populations are prone to respond to global changes through shifts in phenology, distribution and abundance. However, global changes cover several factors such as climate and land-use, the relative importance of these being largely unknown. Here, we aim at disentangling the effects of climate, land-use, and geographical drivers on aphid abundance and phenology in France, at a regional scale and over the last 40 years. We used aerial data obtained from suction traps between 1978 and 2015 on five aphid species varying in their degree of specialization to legumes, along with climate, legume crop area and geographical data. Effects of environmental and geographical variables on aphid annual abundance and spring migration dates were analyzed using generalized linear mixed models. We found that within the last four decades, aphids have advanced their spring migration by a month, mostly due to the increase in temperature early in the year, and their abundance decreased by half on average, presumably in response to a combination of factors. The influence of legume crop area decreased with the degree of specialization of the aphid species to such crops. The effect of geographical variation was high even when controlling for environmental variables, suggesting that many other spatially structured processes act on aphid population characteristics. Multifactorial analyses helped to partition the effects of different global change drivers. Climate and land-use changes have strong effects on aphid populations, with important implications for future agriculture. Additionally, trait-based response variation could have major consequences at the community scale.


Subject(s)
Aphids , Climate Change , Fabaceae/parasitology , Animal Migration , Animals , Crops, Agricultural , Ecosystem , France , Geography , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...