Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(3): 1906-1915, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36626247

ABSTRACT

In controlled radical polymerization, oxygen is typically regarded as an undesirable component resulting in terminated polymer chains, deactivated catalysts, and subsequent cessation of the polymerization. Here, we report an unusual atom transfer radical polymerization whereby oxygen favors the polymerization by triggering the in situ transformation of CuBr/L to reactive superoxido species at room temperature. Through a superoxido ARGET-ATRP mechanism, an order of magnitude faster polymerization rate and a rapid and complete initiator consumption can be achieved as opposed to when unoxidized CuBr/L was instead employed. Very high end-group fidelity has been demonstrated by mass-spectrometry and one-pot synthesis of block and multiblock copolymers while pushing the reactions to reach near-quantitative conversions in all steps. A high molecular weight polymer could also be targeted (DPn = 6400) without compromising the control over the molar mass distributions (D < 1.20), even at an extremely low copper concentration (4.5 ppm). The versatility of the technique was demonstrated by the polymerization of various monomers in a controlled fashion. Notably, the efficiency of our methodology is unaffected by the purity of the starting CuBr, and even a brown highly-oxidized 15-year-old CuBr reagent enabled a rapid and controlled polymerization with a final dispersity of 1.07, thus not only reducing associated costs but also omitting the need for rigorous catalyst purification prior to polymerization.

2.
Chem Sci ; 13(28): 8274-8288, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35919707

ABSTRACT

Copper guanidine quinolinyl complexes act as good entatic state models due to their distorted structures leading to a high similarity between Cu(i) and Cu(ii) complexes. For a better understanding of the entatic state principle regarding electron transfer a series of guanidine quinolinyl ligands with different substituents in the 2- and 4-position were synthesized to examine the influence on the electron transfer properties of the corresponding copper complexes. Substituents with different steric or electronic influences were chosen. The effects on the properties of the copper complexes were studied applying different experimental and theoretical methods. The molecular structures of the bis(chelate) copper complexes were examined in the solid state by single-crystal X-ray diffraction and in solution by X-ray absorption spectroscopy and density functional theory (DFT) calculations revealing a significant impact of the substituents on the complex structures. For a better insight natural bond orbital (NBO) calculations of the ligands and copper complexes were performed. The electron transfer was analysed by the determination of the electron self-exchange rates following Marcus theory. The obtained results were correlated with the results of the structural analysis of the complexes and of the NBO calculations. Nelsen's four-point method calculations give a deeper understanding of the thermodynamic properties of the electron transfer. These studies reveal a significant impact of the substituents on the properties of the copper complexes.

3.
J Inorg Biochem ; 224: 111541, 2021 11.
Article in English | MEDLINE | ID: mdl-34416481

ABSTRACT

The tyrosinase-like activity of hybrid guanidine-stabilized bis(µ-oxido) dicopper(III) complexes [Cu2(µ-O)2(L)2](X)2 (L = 2-{2-((Diethylamino)methyl)phenyl}-1,1,3,3-tetramethylguanidine (TMGbenzNEt2, L2) and 2-{2-((Di-isopropylamino)methyl)phenyl}-1,1,3,3-tetramethylguanidine (TMGbenzNiPr2, L3); X = PF6-, BF4-, CF3SO3-) is described. New aromatic hybrid guanidine amine ligands were developed with varying amine donor function. Their copper(I) complexes were analyzed towards their ability to activate dioxygen in the presence of different weakly coordinating anions. The resulting bis(µ-oxido) species were characterized at low temperatures by UV/Vis and resonance Raman spectroscopy, cryo-ESI mass spectrometry and density functional theory calculations. Small structural changes in the ligand sphere were found to influence the characteristic ligand-to-metal charge transfer (LMCT) features of the bis(µ-oxido) species, correlating a redshift in the UV/Vis spectrum with weaker N-donor function of the ligand. DFT calculations elucidated the influence of the steric and electronic properties of the bis(µ-oxido) species leading to a higher twist of the Cu2O2 plane against the CuN2 plane and a stretching of the Cu2O2 core. Despite their moderate stability at -100 °C, the bis(µ-oxido) complexes exhibited a remarkable activity in catalytic oxygenation reactions of polycyclic aromatic alcohols. Further the selectivity of the catalyst in the hydroxylation reactions of challenging phenolic substrates is not changed despite an increasing shield of the reactive bis(µ-oxido) core. The generated quinones were found to form exclusively bent phenazines, providing a promising strategy to access tailored phenazine derivatives.


Subject(s)
Copper/chemistry , Guanidine/chemistry , Monophenol Monooxygenase/metabolism , Organometallic Compounds/chemistry , Oxygen/chemistry , Alcohols/chemistry , Amines/chemistry , Hydroxyquinolines/chemistry , Ligands , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Molecular Structure , Naphthols/chemistry , Spectrum Analysis, Raman/methods
4.
Angew Chem Int Ed Engl ; 60(25): 14154-14162, 2021 06 14.
Article in English | MEDLINE | ID: mdl-33856088

ABSTRACT

One of the challenges of catalysis is the transformation of inert C-H bonds to useful products. Copper-containing monooxygenases play an important role in this regard. Here we show that low-temperature oxygenation of dinuclear copper(I) complexes leads to unusual tetranuclear, mixed-valent µ4 -peroxo [CuI /CuII ]2 complexes. These Cu4 O2 intermediates promote irreversible and thermally activated O-O bond homolysis, generating Cu2 O complexes that catalyze strongly exergonic H-atom abstraction from hydrocarbons, coupled to O-transfer. The Cu2 O species can also be produced with N2 O, demonstrating their capability for small-molecule activation. The binding and cleavage of O2 leading to the primary Cu4 O2 intermediate and the Cu2 O complexes, respectively, is elucidated with a range of solution spectroscopic methods and mass spectrometry. The unique reactivities of these species establish an unprecedented, 100 % atom-economic scenario for the catalytic, copper-mediated monooxygenation of organic substrates, employing both O-atoms of O2 .

5.
Chemistry ; 26(34): 7556-7562, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32104930

ABSTRACT

The enzyme tyrosinase contains a reactive side-on peroxo dicopper(II) center as catalytically active species in C-H oxygenation reactions. The tyrosinase activity of the isomeric bis(µ-oxo) dicopper(III) form has been discussed controversially. The synthesis of bis(µ-oxo) dicopper(III) species [Cu2 (µ-O)2 (L1)2 ](X)2 ([O1](X)2 , X=PF6 - , BF4 - , OTf- , ClO4 - ), stabilized by the new hybrid guanidine ligand 2-{2-((dimethylamino)methyl)phenyl}-1,1,3,3-tetramethylguanidine (L1), and its characterization by UV/Vis, Raman, and XAS spectroscopy, as well as cryo-UHR-ESI mass spectrometry, is described. We highlight selective oxygenation of a plethora of phenolic substrates mediated by [O1](PF6 )2 , which results in mono- and bicyclic quinones and provides an attractive strategy for designing new phenazines. The selectivity is predicted by using the Fukui function, which is hereby introduced into tyrosinase model chemistry. Our bioinspired catalysis harnesses molecular dioxygen for organic transformations and achieves a substrate diversity reaching far beyond the scope of the enzyme.

6.
Chemistry ; 25(48): 11257-11268, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31131927

ABSTRACT

Selective oxidation reactions of organic compounds with dioxygen using molecular copper complexes are of relevance to synthetic chemistry as well as enzymatic reactivity. In the enzyme peptidylglycine α-hydroxylating monooxygenase (PHM), the hydroxylating activity towards aliphatic substrates arises from the cooperative effect between two copper atoms, but the detailed mechanism has yet to be fully clarified. Herein, we report on a model complex showing hydroxylation of an aliphatic ligand initiated by dioxygen. According to DFT calculations, the proton-coupled electron-transfer (PCET) process leading to ligand hydroxylation in this complex benefits from cooperative effects between the two copper atoms. While one copper atom is responsible for dioxygen binding and activation, the other stabilizes the product of intramolecular PCET by copper-ligand charge transfer. The results of this work might pave the way for the directed utilization of cooperative effects in oxidation reactions.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Guanidines/chemistry , Oxygen/metabolism , Binding Sites , Density Functional Theory , Electron Transport , Hydroxylation , Ligands , Mixed Function Oxygenases/chemistry , Models, Molecular , Multienzyme Complexes/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...