Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Med Technol ; 5: 1211423, 2023.
Article in English | MEDLINE | ID: mdl-38045886

ABSTRACT

Parylene C is well-known as an encapsulation material for medical implants. Within the approach of miniaturization and automatization of a bone distractor, piezoelectric actuators were encapsulated with Parylene C. The stretchability of the polymer was investigated with respect to the encapsulation functionality of piezoelectric chips. We determined a linear yield strain of 1% of approximately 12-µm-thick Parylene C foil. Parylene C encapsulation withstands the mechanical stress of a minimum of 5×105 duty cycles by continuous actuation. The experiments demonstrate that elongation of the encapsulation on piezoelectric actuators and thus the elongation of Parylene C up to 0.8 mm are feasible.

2.
ACS Appl Mater Interfaces ; 15(12): 16221-16231, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36939586

ABSTRACT

Plasma-enhanced atomic layer deposition (PEALD) is utilized to improve the barrier properties of an organic chip-film patch (CFP) when it is used as an implant to prevent moisture and ions from migrating into the embedded electronic circuits. For this purpose, surface condition and material properties of eight modifications of Al2O3-TiO2 nanolaminates sequentially deposited on polyimide PI-2611 films are evaluated in detail. The effect of stress-induced warpage of the deposited Al2O3-TiO2 on the wafer level is calculated with the Stoney equation and reveals higher tensile stress values while increasing the thickness of Al2O3-TiO2 nanolaminates from 20 up to 80 nm. Contact angle measurement and atomic force microscopy are used to investigate the surface energy and wettability, as well as the surface morphology of polyimide-Al2O3-TiO2 interfaces. We show that plasma treatment of pristine polyimide leads to an enhanced adhesion force of the PEAL-deposited layer by a factor of 1.3. The water vapor transmission rate (WVTR) is determined by exposing the coated polyimide films to 85% humidity and 23 °C and yields down to 1.58 × 10-3 g(H2O)/(m2 d). The data obtained are compared with alternative coating processes using the polymers parylene-C and benzocyclobutene (BCB). The latter shows higher WVTR values of 1.2 × 10-1 and 1.7 × 10-1 g(H2O)/(m2 d) compared to the PEALD-PI-2611 systems, indicating lower barrier properties. Two Al2O3-TiO2 modifications with low WVTR values have been chosen for encapsulating the CFP substrates and exposing them in a long-time experiment to chemical and mechanical loads in a chamber filled with phosphate-buffered saline at 37 °C, pH 7.3, and a cyclically applied pressure of 160 mbar (∼120 mm Hg). The electrical leakage behavior of the CFP systems is measured and reveals reliable electrical long-term stability far beyond 11 months, highlighting the great potential of PEALD-encapsulated CFPs.

3.
Front Med Technol ; 4: 920384, 2022.
Article in English | MEDLINE | ID: mdl-35756534

ABSTRACT

Presbyopia describes the eye's physiological loss of the ability to see close objects clearly. The adaptation to different viewing distances, termed accommodation, is achieved by a change in the curvature of the eye lens induced by the ciliary muscle. A possible approach to correct presbyopia could be to detect the ciliary muscle's neuromuscular signals during accommodation and transfer these signals electronically to a biomimetic, micro-optical system to provide the necessary refractive power. As a preliminary step toward such a described system, a novel three-dimensional and biocompatible lift-off method was developed. In addition, the influence of the distance between the electrically conducting surfaces of the lens on the accommodated signal amplitudes was investigated. Compared to the conventional masking methods, this process has the advantage that three-dimensional surfaces can be masked with biocompatible gelling sugar by utilizing a direct writing process with a dispensing robot. Since gelling sugar can be used at room temperature and is water-soluble, the process presented is suitable for materials that should not be exposed to organic solvents or excessively high temperatures. Apart from investigating the shrinkage behavior of the gelling sugar during the physical vapor deposition (PVD) coating process, this paper also describes the approaches used to partially coat a commercial scleral contact lens with an electrically conductive material. It was shown that gelling sugar withstands the conditions during the PVD processes and a successful lift-off was performed. To investigate the influence of the spacing between the electrically conductive regions of the contact lens on the measured signals, three simplified electrode configurations with different distances were fabricated using a 3D printer. By testing these in an experimental setup, it could be demonstrated that the distance between the conductive surfaces has a significant influence on the amplitude. Regarding the described lift-off process using gelling sugar, it was found that the dispensing flow rate has a direct influence on the line uniformity. Future work should address the influence of the viscosity of the gelling sugar as well as the diameter of the cannula. It is assumed that they are the prevailing limitations for the lateral resolution.

4.
ACS Appl Mater Interfaces ; 13(3): 3536-3546, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33438388

ABSTRACT

TiO2 thin films were deposited on the orthopedic implant material polyetheretherketone (PEEK) by plasma enhanced atomic layer deposition (PEALD) and characterized for their ability to enhance the osseointegrative properties. PEALD was chosen for film deposition to circumvent drawbacks present in line-of-sight deposition techniques, which require technically complex setups for a homogeneous coating thickness. Film conformality was analyzed on silicon 3D test structures and PEEK with micron-scale surface roughness. Wettability and surface energy were determined through contact angle measurements; film roughness and crystallinity were determined by atomic force microscopy and X-ray diffraction, respectively. Adhesion properties of TiO2 on PEEK were determined with tensile strength tests. Cell tests were performed with the mouse mesenchymal tumor stem cell line ST-2. TiO2-coated PEEK disks were used as substrates for cell proliferation tests and long-term differentiation tests. After 28 days of cultivation, a mineralized bone matrix was observed. Furthermore, the collagen I and osteocalcin content were determined. The results reveal that the osteogenic properties of the TiO2 thin film are comparable to those of hydroxyapatite, and thus bioactive properties of PEEK implants are improved by TiO2 thin films deposited with PEALD.

5.
Front Neurosci ; 14: 552876, 2020.
Article in English | MEDLINE | ID: mdl-33071735

ABSTRACT

The performance of electrode arrays insulated by low-temperature atomic layer deposited (ALD) titanium dioxide (TiO2) or hafnium dioxide (HfO2) for culture of electrogenic cells and for recording of extracellular action potentials is investigated. If successful, such insulation may be considered to increase the stability of future neural implants. Here, insulation of titanium nitride electrodes of microelectrode arrays (MEAs) was performed using ALD of nanometer-sized TiO2 or hafnium oxide at low temperatures (100-200°C). The electrode properties, impedance, and leakage current were measured and compared. Although electrode insulation using ALD oxides increased the electrode impedance, it did not prevent stable, physiological recordings of electrical activity from electrogenic cells (cardiomyocytes and neurons). The insulation quality, estimated from leakage current measurements, was less than 100 nA/cm2 in a range of 3 V. Cardiomyocytes were successfully cultured and recorded after 5 days on the insulated MEAs with signal shapes similar to the recordings obtained using uncoated electrodes. Light-induced electrical activity of retinal ganglion cells was recorded using a complementary metal-oxide semiconductor-based MEA insulated with HfO2 without driving the recording electrode into saturation. The presented results demonstrate that low-temperature ALD-deposited TiO2 and hafnium oxide are biocompatible and biostable and enable physiological recordings. Our results indicate that nanometer-sized ALD insulation can be used to protect electrodes for long-term biological applications.

7.
Sensors (Basel) ; 18(4)2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29642380

ABSTRACT

Turbidity sensing is very common in the control of drinking water. Furthermore, turbidity measurements are applied in the chemical (e.g., process monitoring), pharmaceutical (e.g., drug discovery), and food industries (e.g., the filtration of wine and beer). The most common measurement technique is nephelometric turbidimetry. A nephelometer is a device for measuring the amount of scattered light of suspended particles in a liquid by using a light source and a light detector orientated in 90° to each other. Commercially available nephelometers cost usually-depending on the measurable range, reliability, and precision-thousands of euros. In contrast, our new developed GRIN-lens-based nephelometer, called GRINephy, combines low costs with excellent reproducibility and precision, even at very low turbidity levels, which is achieved by its ability to rotate the sample. Thereby, many cuvette positions can be measured, which results in a more precise average value for the turbidity calculated by an algorithm, which also eliminates errors caused by scratches and contaminations on the cuvettes. With our compact and cheap Arduino-based sensor, we are able to measure in the range of 0.1-1000 NTU and confirm the ISO 7027-1:2016 for low turbidity values.

SELECTION OF CITATIONS
SEARCH DETAIL
...