Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 19(4): e1011046, 2023 04.
Article in English | MEDLINE | ID: mdl-37068099

ABSTRACT

Neurons integrate from thousands of synapses whose strengths span an order of magnitude. Intriguingly, in mouse neocortex, the few 'strong' synapses are formed between similarly tuned cells, suggesting they determine spiking output. This raises the question of how other computational primitives, including 'background' activity from the many 'weak' synapses, short-term plasticity, and temporal factors contribute to spiking. We used paired recordings and extracellular stimulation experiments to map excitatory postsynaptic potential (EPSP) amplitudes and paired-pulse ratios of synaptic connections formed between pyramidal neurons in layer 2/3 (L2/3) of barrel cortex. While net short-term plasticity was weak, strong synaptic connections were exclusively depressing. Importantly, we found no evidence for clustering of synaptic properties on individual neurons. Instead, EPSPs and paired-pulse ratios of connections converging onto the same cells spanned the full range observed across L2/3, which critically constrains theoretical models of cortical filtering. To investigate how different computational primitives of synaptic information processing interact to shape spiking, we developed a computational model of a pyramidal neuron in the excitatory L2/3 circuitry, which was constrained by our experiments and published in vivo data. We found that strong synapses were substantially depressed during ongoing activation and their ability to evoke correlated spiking primarily depended on their high temporal synchrony and high firing rates observed in vivo. However, despite this depression, their larger EPSP amplitudes strongly amplified information transfer and responsiveness. Thus, our results contribute to a nuanced framework of how cortical neurons exploit synergies between temporal coding, synaptic properties, and noise to transform synaptic inputs into spikes.


Subject(s)
Neocortex , Neurons , Mice , Animals , Neurons/physiology , Synaptic Transmission/physiology , Pyramidal Cells/physiology , Synapses/physiology , Neuronal Plasticity/physiology , Action Potentials/physiology
3.
Cell ; 183(6): 1586-1599.e10, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33159859

ABSTRACT

The hippocampus is crucial for spatial navigation and episodic memory formation. Hippocampal place cells exhibit spatially selective activity within an environment and have been proposed to form the neural basis of a cognitive map of space that supports these mnemonic functions. However, the direct influence of place cell activity on spatial navigation behavior has not yet been demonstrated. Using an 'all-optical' combination of simultaneous two-photon calcium imaging and two-photon optogenetics, we identified and selectively activated place cells that encoded behaviorally relevant locations in a virtual reality environment. Targeted stimulation of a small number of place cells was sufficient to bias the behavior of animals during a spatial memory task, providing causal evidence that hippocampal place cells actively support spatial navigation and memory.


Subject(s)
Hippocampus/cytology , Place Cells/cytology , Spatial Behavior , Spatial Memory , Animals , Behavior, Animal , Male , Mice, Inbred C57BL , Neurons/metabolism , Opsins/metabolism , Optogenetics , Photons , Reward , Running , Spatial Navigation
SELECTION OF CITATIONS
SEARCH DETAIL
...