Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Phys ; 17(12): 1396-1401, 2021.
Article in English | MEDLINE | ID: mdl-34966439

ABSTRACT

Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals propagating through the network consistent with domain walls. The analysis of these data from a continuous month-long operation of GNOME finds no statistically significant signals, thus placing experimental constraints on such dark matter scenarios.

2.
Sci Adv ; 6(8): eaax8256, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32128396

ABSTRACT

Induced transparency is a common but remarkable effect in optics. It occurs when a strong driving field is used to render an otherwise opaque material transparent. The effect is known as electromagnetically induced transparency in atomic media and optomechanically induced transparency in systems that consist of coupled optical and mechanical resonators. In this work, we introduce the concept of photothermally induced transparency (PTIT). It happens when an optical resonator exhibits nonlinear behavior due to optical heating of the resonator or its mirrors. Similar to the established mechanisms for induced transparency, PTIT can suppress the coupling between an optical resonator and a traveling optical field. We further show that the dispersion of the resonator can be modified to exhibit slow or fast light. Because of the relatively slow thermal response, we observe the bandwidth of the PTIT to be 2π × 15.9 Hz, which theoretically suggests a group velocity of as low as 5 m/s.

3.
Nanoscale ; 11(30): 14362-14371, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31332410

ABSTRACT

The recent discovery of single-photon emitting defects hosted by the two-dimensional wide band gap semiconductor hexagonal boron nitride (hBN) has inspired a great number of experiments. Key characteristics of these quantum emitters are their capability to operate at room temperature with a high luminosity. In spite of large theoretical and experimental research efforts, the exact nature of the emission remains unresolved. In this work we utilize layer-by-layer etching of multilayer hBN to localize the quantum emitters with atomic precision. Our results suggest the position of the emitters correlates with the fabrication method: emitters formed under plasma treatment are always in close proximity to the crystal surface, while emitters created under electron irradiation are distributed randomly throughout the entire crystal. This disparity could be traced back to the lower kinetic energy of the ions in the plasma compared to the kinetic energy of the electrons in the particle accelerator. The emitter distance to the surface also correlates with the excited state lifetime: near-surface emitters have a shorter one compared to emitters deep within the crystal. Finite-difference time-domain and density functional theory simulations show that optical and electronic effects are not responsible for this difference, indicating effects such as coupling to surface defects or phonons might cause the reduced lifetime. Our results pave a way toward identification of the defect, as well as engineering the emitter properties.

4.
Nat Commun ; 10(1): 1202, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30867428

ABSTRACT

Characteristic for devices based on two-dimensional materials are their low size, weight and power requirements. This makes them advantageous for use in space instrumentation, including photovoltaics, batteries, electronics, sensors and light sources for long-distance quantum communication. Here we present a comprehensive study on combined radiation effects in Earth's atmosphere on various devices based on these nanomaterials. Using theoretical modeling packages, we estimate relevant radiation levels and then expose field-effect transistors, single-photon sources and monolayers as building blocks for future electronics to γ-rays, protons and electrons. The devices show negligible change in performance after the irradiation, suggesting robust suitability for space use. Under excessive γ-radiation, however, monolayer WS2 shows decreased defect densities, identified by an increase in photoluminescence, carrier lifetime and a change in doping ratio proportional to the photon flux. The underlying mechanism is traced back to radiation-induced defect healing, wherein dissociated oxygen passivates sulfur vacancies.

5.
Opt Express ; 26(10): 12424-12431, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29801280

ABSTRACT

A number of techniques exist to use an ensemble of atoms as a quantum memory for light. Many of these propose to use backward retrieval as a way to improve the storage and recall efficiency. We report on a demonstration of an off-resonant Raman memory that uses backward retrieval to achieve an efficiency of 65 ± 6% at a storage time of one pulse duration. The memory has a characteristic decay time of 60 µs, corresponding to a delay-bandwidth product of 160.

6.
Sci Rep ; 8(1): 221, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29317728

ABSTRACT

High precision, high numerical aperture mirrors are desirable for mediating strong atom-light coupling in quantum optics applications and can also serve as important reference surfaces for optical metrology. In this work we demonstrate the fabrication of highly-precise hemispheric mirrors with numerical aperture NA = 0.996. The mirrors were fabricated from aluminum by single-point diamond turning using a stable ultra-precision lathe calibrated with an in-situ white-light interferometer. Our mirrors have a diameter of 25 mm and were characterized using a combination of wide-angle single-shot and small-angle stitched multi-shot interferometry. The measurements show root-mean-square (RMS) form errors consistently below 25 nm. The smoothest of our mirrors has a RMS error of 14 nm and a peak-to-valley (PV) error of 88 nm, which corresponds to a form accuracy of λ/50 for visible optics.

7.
Sci Rep ; 5: 17633, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26655839

ABSTRACT

Optical resonance is central to a wide range of optical devices and techniques. In an optical cavity, the round-trip length and mirror reflectivity can be chosen to optimize the circulating optical power, linewidth, and free-spectral range (FSR) for a given application. In this paper we show how an atomic spinwave system, with no physical mirrors, can behave in a manner that is analogous to an optical cavity. We demonstrate this similarity by characterising the build-up and decay of the resonance in the time domain, and measuring the effective optical linewidth and FSR in the frequency domain. Our spinwave is generated in a 20 cm long Rb gas cell, yet it facilitates an effective FSR of 83 kHz, which would require a round-trip path of 3.6 km in a free-space optical cavity. Furthermore, the spinwave coupling is controllable enabling dynamic tuning of the effective cavity parameters.

8.
Nat Commun ; 5: 4663, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25118711

ABSTRACT

Photo-induced forces can be used to manipulate and cool the mechanical motion of oscillators. When the oscillator is used as a force sensor, such as in atomic force microscopy, active feedback is an enticing route to enhance measurement performance. Here we show broadband multimode cooling of -23 dB down to a temperature of 8 ± 1 K in the stationary regime. Through the use of periodic quiescence feedback cooling, we show improved signal-to-noise ratios for the measurement of transient signals. We compare the performance of real feedback to numerical post processing of data and show that both methods produce similar improvements to the signal-to-noise ratio of force measurements. We achieved a room temperature force measurement sensitivity of <2 × 10(-16)N with integration time of less than 0.1 ms. The high precision and fast force microscopy results presented will potentially benefit applications in biosensing, molecular metrology, subsurface imaging and accelerometry.

9.
J Vis Exp ; (81): e50552, 2013 Nov 11.
Article in English | MEDLINE | ID: mdl-24300586

ABSTRACT

Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain.


Subject(s)
Computer Storage Devices , Optics and Photonics/methods , Quantum Theory , Rubidium/chemistry , Gases/chemistry
10.
Opt Lett ; 36(23): 4680-2, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22139282

ABSTRACT

We report on the performance of a dual-wavelength resonant, traveling-wave optical parametric oscillator to generate squeezed light for application in advanced gravitational-wave interferometers. Shot noise suppression of 8.6±0.8 dB was measured across the detection band of interest to Advanced LIGO, and controlled squeezing measured over 5900 s. Our results also demonstrate that the traveling-wave design has excellent intracavity backscattered light suppression of 47 dB and incident backscattered light suppression of 41 dB, which is a crucial design issue for application in advanced interferometers.

11.
Nature ; 461(7261): 241-5, 2009 Sep 10.
Article in English | MEDLINE | ID: mdl-19741705

ABSTRACT

The bandwidth and versatility of optical devices have revolutionized information technology systems and communication networks. Precise and arbitrary control of an optical field that preserves optical coherence is an important requisite for many proposed photonic technologies. For quantum information applications, a device that allows storage and on-demand retrieval of arbitrary quantum states of light would form an ideal quantum optical memory. Recently, significant progress has been made in implementing atomic quantum memories using electromagnetically induced transparency, photon echo spectroscopy, off-resonance Raman spectroscopy and other atom-light interaction processes. Single-photon and bright-optical-field storage with quantum states have both been successfully demonstrated. Here we present a coherent optical memory based on photon echoes induced through controlled reversible inhomogeneous broadening. Our scheme allows storage of multiple pulses of light within a chosen frequency bandwidth, and stored pulses can be recalled in arbitrary order with any chosen delay between each recalled pulse. Furthermore, pulses can be time-compressed, time-stretched or split into multiple smaller pulses and recalled in several pieces at chosen times. Although our experimental results are so far limited to classical light pulses, our technique should enable the construction of an optical random-access memory for time-bin quantum information, and have potential applications in quantum information processing.

12.
Phys Rev Lett ; 95(15): 153904, 2005 Oct 07.
Article in English | MEDLINE | ID: mdl-16241728

ABSTRACT

We demonstrate theoretically that the resonance frequencies of high-Q microcavities in two-dimensional photonic crystal membranes can be tuned over a wide range by introducing a subwavelength dielectric tip into the cavity mode. Three-dimensional finite-difference time-domain simulations show that by varying the lateral and vertical positions of the tip, it is possible to tune the resonator frequency without lowering the quality factor. Excellent agreement with a perturbative theory is obtained, showing that the tuning range is limited by the ratio of the cavity mode volume to the effective polarizability of the nanoperturber.

13.
Phys Rev Lett ; 88(23): 231102, 2002 Jun 10.
Article in English | MEDLINE | ID: mdl-12059348

ABSTRACT

Interferometric gravitational wave detectors are expected to be limited by shot noise at some frequencies. We experimentally demonstrate that a power recycled Michelson with squeezed light injected into the dark port can overcome this limit. An improvement in the signal-to-noise ratio of 2.3 dB is measured and locked stably for long periods of time. The configuration, control, and signal readout of our experiment are compatible with current gravitational wave detector designs. We consider the application of our system to long baseline interferometer designs such as LIGO.

SELECTION OF CITATIONS
SEARCH DETAIL
...