Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pituitary ; 25(1): 1-51, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34797529

ABSTRACT

Much of our understanding of GH's action stems from animal models and the generation and characterization of genetically altered or modified mice. Manipulation of genes in the GH/IGF1 family in animals started in 1982 when the first GH transgenic mice were produced. Since then, multiple laboratories have altered mouse DNA to globally disrupt Gh, Ghr, and other genes upstream or downstream of GH or its receptor. The ability to stay current with the various genetically manipulated mouse lines within the realm of GH/IGF1 research has been daunting. As such, this review attempts to consolidate and summarize the literature related to the initial characterization of many of the known gene-manipulated mice relating to the actions of GH, PRL and IGF1. We have organized the mouse lines by modifications made to constituents of the GH/IGF1 family either upstream or downstream of GHR or to the GHR itself. Available data on the effect of altered gene expression on growth, GH/IGF1 levels, body composition, reproduction, diabetes, metabolism, cancer, and aging are summarized. For the ease of finding this information, key words are highlighted in bold throughout the main text for each mouse line and this information is summarized in Tables 1, 2, 3 and 4. Most importantly, the collective data derived from and reported for these mice have enhanced our understanding of GH action.


Subject(s)
Growth Hormone , Receptors, Somatotropin , Animals , Body Composition , Growth Hormone/genetics , Growth Hormone/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Mice , Mice, Transgenic , Models, Animal , Receptors, Somatotropin/genetics , Receptors, Somatotropin/metabolism
2.
Pituitary ; 24(3): 384-399, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33433889

ABSTRACT

PURPOSE: Most studies that have examined the transcriptional response to GH have been performed with a single tissue. Thus, the current study performed RNASeq across three insulin-sensitive tissues of GH-treated GH deficient (GHKO) mice. METHODS: GHKO mice were injected with recombinant human GH (hGH) or vehicle daily for 5 days and adipose, liver, and muscle tissues were collected 4 h after the final injection. RNA was isolated from the tissues and sequenced. Genes that were differentially expressed between GH and vehicle treatments were further analyzed. Enrichment analysis and topology-aware pathway analysis were performed. RESULTS: GHKO mice treated with hGH had expected phenotypic alterations, with increased body, fat, fluid, liver, and muscle mass, and increased serum IGF-1 and insulin. 55 Genes were differentially expressed in all three tissues, including the canonical GH targets Igf1, Igfals, and Cish. Enrichment analysis confirmed the canonical GH response in select tissues, such as cell proliferation, metabolism, and fibrosis. The JAK/STAT pathway was the only pathway significantly altered in all three tissues. CONCLUSIONS: As expected, GH caused expression changes of many known target genes, although new candidate GH targets were identified. Liver and muscle appear to be more GH sensitive than adipose tissue due to the larger number of DEG and pathways significantly altered, but adipose still has a characteristic GH response. The diversity of changes uncovered in all three tissues after 5 days of GH treatment highlights the multiplicity of GH's effects in its target tissues.


Subject(s)
Growth Hormone , Insulin , Adipose Tissue , Animals , Gene Expression Profiling , Growth Hormone/genetics , Insulin-Like Growth Factor I/genetics , Liver , Mice
3.
Pediatr Endocrinol Rev ; 16(Suppl 1): 2-10, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30378777

ABSTRACT

The purpose of this review is to describe and document the discovery of growth hormone (GH) and various activities associated with it. Crucial to this discourse will be a chronicle of results related to the structure of GH. Many individuals were instrumental in the early and current work. Throughout the review we present glimpses into their scientific lives as it affects the evolution of GH's story. We realize that we have not presented a comprehensive review of GH's history and its current and future status, and apologize for the omission of many individuals who contributed to this story.


Subject(s)
Growth Hormone/metabolism , Humans , Insulin-Like Growth Factor I
SELECTION OF CITATIONS
SEARCH DETAIL
...