Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
Add more filters










Publication year range
1.
J Chromatogr A ; 1730: 465165, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39025026

ABSTRACT

In liquid chromatography (LC), discrepancies in liquid properties such as elution strength and viscosity lead to a mismatch between the sample diluent and mobile phase. This mismatch can result in peak deformation, including peak splitting or even breakthrough, particularly when large sample volumes are injected. The formation of a T-junction between sample solution and mobile phase flow stream, a technique previously used in supercritical fluid chromatography, is the key enabler of feed injection in LC. This T-junction allows the injection needle to infuse the sample directly into the mobile phase. It ensures that the diluent is continuously mixed with the mobile phase before introduced onto the column, thereby reducing the initial solvent mismatch. The degree of dilution depends on the ratio between mobile phase flow rate (Qmp) and feed rate (Qfeed) at which the sample is infused. Our study examined the effect of several parameters on the feed injection of large sample volumes from purely organic diluents in reversed-phase LC. These parameters included the type of diluent, compound retention factor (k), injected sample volume (Vinj), and Qmp. With varied Qfeed, all compounds revealed a similar range of optimal values for Qr = (Qmp-Qfeed)/Qfeed between 2 and 5, a range unaffected by Vinj and Qmp. For Qr > 5, the slope of the plate height curves (H vs. Qr) decreases with increasing k, potentially extending the range of optimal Qr-values. However, the best Qr-value for a separation is determined by the compound with the smallest k, simplifying optimization. Using feed injection, we were able to reduce plate heights by up to a factor of 8 compared to classic flow-through injection of large sample volumes.

2.
Macromol Rapid Commun ; 45(12): e2300716, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38497903

ABSTRACT

Mesoionic N-heterocyclic olefins (mNHOs) have recently emerged as a novel class of highly nucleophilic and super-basic σ-donor compounds. Making use of these properties in synthetic polymer chemistry, it is shown that a combination of a specific mNHO and a Mg-based Lewis acid (magnesium bis(hexamethyldisilazide), Mg(HMDS)2) delivers poly(propylene oxide) in quantitative yields from the polymerization of the corresponding epoxide (0.1 mol% mNHO loading). The initiation mechanism involves monomer activation by the Lewis acid and direct ring-opening of the monomer by nucleophilic attack of the mNHO, forming a zwitterionic propagating species. Modulation of the mNHO properties is thereby a direct tool to impact initiation efficiency, revealing a sterically unencumbered triazole-derivative as particularly useful. The joint application of mNHOs together with borane-type Lewis acids is also outlined, resulting in high conversions and fast polymerization kinetics. Importantly, while molar mass distributions remain relatively broad, indicating faster propagation than initiation, the overall molar masses are significantly lower than found in the case of regular NHOs, underlining the increased nucleophilicity and ensuing improved initiation efficiency of mNHOs.


Subject(s)
Alkenes , Epoxy Compounds , Lewis Acids , Polymerization , Lewis Acids/chemistry , Epoxy Compounds/chemistry , Alkenes/chemistry , Heterocyclic Compounds/chemistry , Molecular Structure , Polymers/chemistry , Polymers/chemical synthesis
3.
J Am Chem Soc ; 146(12): 8435-8446, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38482664

ABSTRACT

Molybdenum alkylidyne N-heterocyclic carbene (NHC) complexes of the type [Mo(C-p-C6H4Y)(OC(R)(CF3)2)2 (L)(NHC)][B(ArF)4] (Y = OMe, NO2; R = CH3, CF3; L = none, pivalonitrile, tetrahydrofuran; NHC = 1,3-dimesitylimidazol-2-ylidene (IMes), 1,3-dimesityl-3,4-dihydroimidazol-2-ylidene (IMesH2), 1,3-dimesityl-3,4-dichloroimidazol-2-ylidene (IMesCl2), 1,3-diisopropylimidazol-2-ylidene (IiPr); B(ArF)4- = tetrakis(3,5-bis(trifluoromethyl)phen-1-yl)borate) were used in the ring expansion metathesis polymerization (REMP) of cyclic olefins. With cis-cyclooctene (cCOE) cyclic, low molecular weight oligomers were obtained at low monomer concentrations and the cyclic nature of the polymer was confirmed by MALDI-TOF measurements. High-molecular weight cyclic poly(cCOE) became available at high monomer concentrations. Also, post-REMP allowed for converting low-molecular-weight cyclic poly(cCOE) into high-molecular-weight cyclic poly(cCOE). Tailored catalysts together with suitable additives offered access to the stereoselective REMP of functional norbornenes providing functional cis-isotactic (cis-it), cis-syndiotactic (cis-st) and trans-it poly(norbornene)s with up to 99% stereoselectivity. Mechanistic details supported by density functional theory (DFT) calculations are outlined.

6.
Chemistry ; 29(52): e202301818, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37366606

ABSTRACT

The first neutral and cationic Mo imido alkylidene cyclic alkyl amino carbene (CAAC) complexes of the general formulae [Mo(N-Ar)(CHCMe2 Ph)(X)2 (CAAC)] and [Mo(N-Ar)(CHCMe2 Ph)(X)(CAAC)][B(ArF )4 ] (X=Br, Cl, OTf, OC6 F5 ; CAAC=1-(2,6-iPr2 -C6 H3 )-3,3,5,5-tetramethyltetrahydropyrrol-2-ylidene) have been synthesized from molybdenum imido bishalide alkylidene DME precursors. Different combinations of the imido and "X" ligands have been employed to understand synthetic peculiarities. Selected complexes have been characterized by single-crystal X-ray analysis. Due to the pronounced σ-donor/π-acceptor characteristics of CAACs, the corresponding neutral and cationic molybdenum imido alkylidene CAAC complexes do not require the presence of stabilizing donor ligands such as nitriles. Calculations on the PBE0-D3BJ/def2-TZVP level for PBE0-D3BJ/def2-SVP optimized geometries revealed partial charges at molybdenum similar to the corresponding molybdenum imido alkylidene N-heterocyclic carbene (NHC) complexes with a slightly higher polarization of the molybdenum alkylidene bond in the CAAC complexes. All cationic complexes have been tested in olefin metathesis reactions and showed improved activity compared to the analogous NHC complexes for hydrocarbon-based substrates, allowing for turnover numbers (TONs) up to 9500 even at room temperature. Some Mo imido alkylidene CAAC complexes are tolerant towards functional groups like thioethers and sulfonamides.

7.
Polymers (Basel) ; 15(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37177328

ABSTRACT

Recently, fiber-reinforced, epoxy-based, optically transparent composites were successfully produced using resin transfer molding (RTM) techniques. Generally, the production of structural, optically transparent composites is challenging since it requires the combination of a very smooth mold surface with a sufficient control of resin flow that leads to no visible voids. Furthermore, it requires a minimum deviation of the refractive indices (RIs) of the matrix polymer and the reinforcement fibers. Here, a new mold design is described and three plates of optically transparent glass fiber-reinforced polymers (tGFRP) with reproducible properties as well as high fiber volume fractions were produced using the RTM process and in situ polymerization of an epoxy resin system enclosing E-glass fiber textiles. Their mechanical (flexural), microstructural (fiber volume fraction, surface roughness, etc.), thermal (DSC, TGA, etc.), and optical (dispersion curves of glass fibers and polymer as well as transmission over visible spectra curves of the tGFRP at varying tempering states) properties were evaluated. The research showed improved surface quality and good transmission data for samples manufactured by a new Optical-RTM setup compared to a standard RTM mold. The maximum transmission was reported to be ≈74%. In addition, no detectable voids were found in these samples. Furthermore, a flexural modulus of 23.49 ± 0.64 GPa was achieved for the Optical-RTM samples having a fiber volume fraction of ≈42%.

8.
Faraday Discuss ; 244(0): 39-50, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37083014

ABSTRACT

Polymeric mesoporous monoliths were prepared via ring-opening metathesis polymerization (ROMP) from norbornene (NBE), 1,4,4a,5,8,8a-hexahydro-1,4,5,8-exo,endo-dimethanonaphthalene (DMN-H6), tris(norborn-2-enylmethylenoxy)methylsilane and the 1st-generation Grubbs catalyst [RuCl2(PCy3)2(CHC6H5)] in the presence of 2-propanol and toluene and surface grafted with 1-(2-((norborn-5-ene-2-carbonyl)oxy)ethyl)-3-ethyl-1H-imidazol-3-ium tetrafluoroborate. Subsequently, a supported ionic-liquid-phase (SILP) system was created by immobilizing the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] with the cationic catalyst [Rh((1-pyrid-1-yl)-3-mesitylimidazol-2-ylidene)(COD)+BF4-] (Rh-1; COD = 1,4-cyclooctadiene) dissolved therein. The regio- and stereoselectivity of Rh-1 dissolved in the IL and supported on the mesoporous monolith, referred to as Rh@SILPROMP, in the hydrosilylation of 1-alkynes with HSiMe2Ph was studied and compared to that of the homogeneous catalyst Rh-1 under biphasic conditions using methyl tert-butyl ether (MTBE) as a second organic phase. Different amounts of IL were used, which allowed for the creation of SILPs with different layer thicknesses. Rh@SILPROMP provided by far better ß-(Z) selectivity for both aromatic and aliphatic 1-alkynes in comparison to Rh-1 used under biphasic conditions. The highest ß-(Z) selectivity was obtained with the thinnest IL layer. No leaching of the IL or rhodium from the SILP system into the organic phase was observed, resulting in virtually metal-free hydrosilylation products. The data obtained with Rh@SILPROMP were also compared with those from previous studies with Rh-1 in the same IL supported on polyurethane-derived mesoporous monolithic supports (Rh@SILPPUR) and on mesoporous SBA-15 (Rh@SILPSBA-15). For the first time, the use of a liquid confinement created by both a SILP and the support itself to tune the transition state of an organometallic catalyst by non-covalent interactions and thus stereo- and regioselectivity is outlined.

9.
Chem Sci ; 13(29): 8649-8656, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35974748

ABSTRACT

Cationic d0 group 6 olefin metathesis catalysts have been recently shown to display in most instances superior activity in comparison to their neutral congeners. Furthermore, their catalytic performance is greatly improved upon immobilization on silica. In this context, we have developed the new family of molecular cationic molybdenum oxo alkylidene complexes stabilized by N-heterocyclic carbenes of the general formula [Mo(O)(CHCMe3)(IMes)(OR)[X-]] (IMes = 1,3-dimesitylimidazol-2-ylidene; R = 1,3-dimesityl-C6H3, C6F5; X- = B(3,5-(CF3)2C6H3)4 -, B(ArF)4, tetrakis(perfluoro-t-butoxy)aluminate (PFTA)). Immobilization of [Mo(O)(CHCMe3)(IMes)(O-1,3-dimesityl-C6H3)+B(ArF)4 -] on silica via surface organometallic chemistry yields an active alkene metathesis catalyst that shows the highest productivity towards terminal olefins amongst all existing molybdenum oxo alkylidene catalysts.

10.
JACS Au ; 2(3): 777-786, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35373213

ABSTRACT

Molecularly defined and classical heterogeneous Mo-based metathesis catalysts are shown to display distinct and unexpected reactivity patterns for the metathesis of long-chain α-olefins at low temperatures (<100 °C). Catalysts based on supported Mo oxo species, whether prepared via wet impregnation or surface organometallic chemistry (SOMC), exhibit strong activity dependencies on the α-olefin chain length, with slower reaction rates for longer substrate chain lengths. In contrast, molecular and supported Mo alkylidenes are highly active and do not display such dramatic dependence on the chain length. State-of-the-art two-dimensional (2D) solid-state nuclear magnetic resonance (NMR) spectroscopy analyses of postmetathesis catalysts, complemented by Fourier transform infrared (FT-IR) spectroscopy and molecular dynamics calculations, evidence that the activity decrease observed for supported Mo oxo catalysts relates to the strong adsorption of internal olefin metathesis products because of interactions with surface Si-OH groups. Overall, this study shows that in addition to the nature and the number of active sites, the metathesis rates and the overall catalytic performance depend on product desorption, even in the liquid phase with nonpolar substrates. This study further highlights the role of the support and active site composition and dynamics on activity as well as the need for considering adsorption in catalyst design.

11.
Chemistry ; 28(8): e202104108, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-34882848

ABSTRACT

Covalent organic frameworks (COFs) offer vast structural and chemical diversity enabling a wide and growing range of applications. While COFs are well-established as heterogeneous catalysts, so far, their high and ordered porosity has scarcely been utilized to its full potential when it comes to spatially confined reactions in COF pores to alter the outcome of reactions. Here, we present a highly porous and crystalline, large-pore COF as catalytic support in α,ω-diene ring-closing metathesis reactions, leading to increased macrocyclization selectivity. COF pore-wall modification by immobilization of a Grubbs-Hoveyda-type catalyst via a mild silylation reaction provides a molecularly precise heterogeneous olefin metathesis catalyst. An increased macro(mono)cyclization (MMC) selectivity over oligomerization (O) for the heterogeneous COF-catalyst (MMC:O=1.35) of up to 51 % compared to the homogeneous catalyst (MMC:O=0.90) was observed along with a substrate-size dependency in selectivity, pointing to diffusion limitations induced by the pore confinement.


Subject(s)
Alkenes , Metal-Organic Frameworks , Catalysis , Cyclization , Porosity
12.
ACS Appl Mater Interfaces ; 14(1): 761-770, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34971306

ABSTRACT

Silicon is one of the most promising materials when it comes to lithium-ion battery anodes because of its high theoretical capacity and the low working potential versus Li/Li+. However, the drastic volume change during lithiation and delithiation leads to a rapid failure of the electrode. In order to accommodate the large volume change, Si@C core-shell nanocomposites have been investigated, as they efficiently protect the Si surface from being exposed to the electrolyte and thus limit side reactions and improve the cycling stability through a stable solid electrolyte interface layer. In recent years, phenolic resins have been investigated as the carbon source due to their facile synthesis and the possibility of scale-up. Here, the influence of the chemical structure of the Si-C interface on electrochemical performance has been analyzed by comparing pristine, silanol-rich and epoxide-functionalized Si/phenolic resin-derived nanocomposites. Whereas pristine Si@C exhibits the highest initial specific capacity of around 2000 mA h/gSi, introduction of silanol groups to the native surface leads to a more homogeneous carbon shell around the Si and thus to an overall higher Coulombic efficiency and a more stable cycling behavior. Additional epoxide functionalization, however, leads to a drastic decrease in initial capacity due to an overall increased resistance and prolongs the activation process. Nevertheless, in the long term, the additional layer leads to more stable cycling, especially at high current rates. For all nanocomposites, the electrochemical performance, characterized by cyclic voltammetry, cycling experiments, and electrochemical impedance spectroscopy, is correlated with the structure of the Si-C interface, determined by transition electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Raman, scanning electron microscopy, and IR-spectroscopy. To the best of our knowledge, the influence of the Si-C interface of a core-shell nanocomposite on structure and electrochemistry by chemically modifying the silicon surface is analyzed and reported for the first time.

13.
Chemistry ; 27(68): 16808, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34873780

ABSTRACT

This special issue on Contemporary Challenges in Catalysis has been organized by three Collaborative Research Centers funded by the German Research Foundation and covers a wide range of aspects and challenges of catalytic research, as described in the Editorial by M. Buchmeiser.


Subject(s)
Catalysis
14.
Chemistry ; 27(68): 17220-17229, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34672398

ABSTRACT

Rh(I) NHC and Rh(III) Cp* NHC complexes (Cp*=pentamethylcyclopentadienyl, NHC=N-heterocyclic carbene=pyrid-2-ylimidazol-2-ylidene (Py-Im), thiophen-2-ylimidazol-2-ylidene) are presented. Selected catalysts were selectively immobilized inside the mesopores of SBA-15 with average pore diameters of 5.0 and 6.2 nm. Together with their homogenous progenitors, the immobilized catalysts were used in the hydrosilylation of terminal alkynes. For aromatic alkynes, both the neutral and cationic Rh(I) complexes showed excellent reactivity with exclusive formation of the ß(E)-isomer. For aliphatic alkynes, however, selectivity of the Rh(I) complexes was low. By contrast, the neutral and cationic Rh(III) Cp* NHC complexes proved to be highly regio- and stereoselective catalysts, allowing for the formation of the thermodynamically less stable ß-(Z)-vinylsilane isomers at room temperature. Notably, the SBA-15 immobilized Rh(I) catalysts, in which the pore walls provide an additional confinement, showed excellent ß-(Z)-selectivity in the hydrosilylation of aliphatic alkynes, too. Also, in the case of 4-aminophenylacetylene, selective formation of the ß(Z)-isomer was observed with a neutral SBA-15 supported Rh(III) Cp* NHC complex but not with its homogenous counterpart. These are the first examples of high ß(Z)-selectivity in the hydrosilylation of alkynes by confinement generated upon immobilization inside mesoporous silica.

15.
Materials (Basel) ; 14(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34683679

ABSTRACT

In this study, optically transparent glass fiber-reinforced polymers (tGFRPs) were produced using a thermoset matrix and an E-glass fabric. In situ polymerization was combined with liquid composite molding (LCM) techniques both in a resin transfer molding (RTM) mold and a lite-RTM (L-RTM) setup between two glass plates. The RTM specimens were used for mechanical characterization while the L-RTM samples were used for transmittance measurements. Optimization in terms of the number of glass fabric layers, the overall degree of transparency of the composite, and the mechanical properties was carried out and allowed for the realization of high mechanical strength and high-transparency tGFRPs. An outstanding degree of infiltration was achieved maintaining up to 75% transmittance even when using 29 layers of E-glass fabric, corresponding to 50 v.% fiber, using an L-RTM setup. RTM specimens with 44 v.% fiber yielded a tensile strength of 435.2 ± 17.6 MPa, and an E-Modulus of 24.3 ± 0.7 GPa.

16.
Organometallics ; 40(15): 2478-2488, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34393318

ABSTRACT

The understanding and control of stereoselectivity is a central aspect in ring-opening metathesis polymerization (ROMP). Herein, we report detailed quantum chemical studies on the reaction mechanism of E-selective ROMP of norborn-2-ene (NBE) with Mo(N-2,6-Me2-C6H3)(CHCMe3)(IMes)(OTf)2 (1, IMes = 1,3-dimesitylimidazol-2-ylidene) as a first step to stereoselective polymerization. Four different reaction pathways based on an ene syn or ene anti approach of NBE to either the syn- or anti-isomer of the neutral precatalyst have been studied. In contrast to the recently established associative mechanism with a terminal alkene, where a neutral olefin adduct is formed, NBE reacts directly with the catalyst via [2 + 2] cycloaddition to form molybdacyclobutane with a reaction barrier about 30 kJ mol-1 lower in free energy than via the formation of a catalyst-monomer adduct. However, the direct cycloaddition of NBE was only found for one out of four stereoisomers. Our findings strongly suggest that this stereoselective approach is responsible for E-selectivity and point toward a substrate-specific reaction mechanism in olefin metathesis with neutral Mo imido alkylidene N-heterocyclic carbene bistriflate complexes.

17.
Materials (Basel) ; 14(4)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672140

ABSTRACT

We report on the pilot scale synthesis and melt spinning of poly(ethylene furanoate) (PEF), a promising bio-based fiber polymer that can heave mechanical properties in the range of commercial poly(ethylene terephthalate) (PET) fibers. Catalyst optimization and solid state polycondensation (SSP) allowed for intrinsic viscosities of PEF of up to 0.85 dL·g-1. Melt-spun multifilament yarns reached a tensile strength of up to 65 cN·tex-1 with an elongation of 6% and a modulus of 1370 cN·tex-1. The crystallization behavior of PEF was investigated by differential scanning calorimetry (DSC) and XRD after each process step, i.e., after polymerization, SSP, melt spinning, drawing, and recycling. After SSP, the previously amorphous polymer showed a crystallinity of 47%, which was in accordance with literature. The corresponding XRD diffractograms showed signals attributable to α-PEF. Additional, clearly assignable signals at 2θ > 30° are discussed. A completely amorphous structure was observed by XRD for as-spun yarns, while a crystalline phase was detected on drawn yarns; however, it was less pronounced than for the granules and independent of the winding speed.

18.
Angew Chem Int Ed Engl ; 60(3): 1374-1382, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33009884

ABSTRACT

Despite their excellent selectivities and activities, Mo-and W-based catalysts for olefin metathesis have not gained the same widespread use as Ru-based systems, mainly due to their inherent air sensitivity. Herein, we describe the synthesis of air-stable cationic-at-metal molybdenum and tungsten imido alkylidene NHC nitrile complexes. They catalyze olefin metathesis reactions of substrates containing functional groups such as (thio-) esters, (thio-) ethers and alcohols without the need for prior activation, for example, by a Lewis acid. The presence of a nitrile ligand was found to be essential for their stability towards air, while no decrease in activity and productivity could be observed upon coordination of a nitrile. Variations of the imido and anionic ligand revealed that alkoxide complexes with electron-withdrawing imido ligands offer the highest reactivities and excellent stability compared to analogous triflate and halide complexes.

19.
Materials (Basel) ; 13(21)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126721

ABSTRACT

Poly(acrylonitrile) (PAN) fibers have two essential drawbacks: they are usually processed by solution-spinning, which is inferior to melt spinning in terms of productivity and costs, and they are flammable in air. Here, we report on the synthesis and melt-spinning of an intrinsically flame-retardant PAN-copolymer with phosphorus-containing dimethylphosphonomethyl acrylate (DPA) as primary comonomer. Furthermore, the copolymerization parameters of the aqueous suspension polymerization of acrylonitrile (AN) and DPA were determined applying both the Fineman and Ross and Kelen and Tüdõs methods. For flame retardancy and melt-spinning tests, multiple PAN copolymers with different amounts of DPA and, in some cases, methyl acrylate (MA) have been synthesized. One of the synthesized PAN-copolymers has been melt-spun with propylene carbonate (PC) as plasticizer; the resulting PAN-fibers had a tenacity of 195 ± 40 MPa and a Young's modulus of 5.2 ± 0.7 GPa. The flame-retardant properties have been determined by Limiting Oxygen Index (LOI) flame tests. The LOI value of the melt-spinnable PAN was 25.1; it therefore meets the flame retardancy criteria for many applications. In short, the reported method shows that the disadvantage of high comonomer content necessary for flame retardation can be turned into an advantage by enabling melt spinning.

20.
Macromol Rapid Commun ; 41(20): e2000338, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32909339

ABSTRACT

1,3-Dicyclcohexyl-6,9-dimethyl-1,3,6,9-tetraazaspiro[4.4]non-7-ene-2,4-dione, a spirocyclic parabanic acid derivative of N,N-dimethylimidazole, is used as thermally latent, protected N-heterocyclic carbene (NHC) in polymerizing anhydride-cured epoxide resins, and azepan-2-one, respectively. The protected carbene is synthesized from 1,3-dimethylimidazolium-2-carboxylate in the presence of two equivalents of cyclohexyl isocyanate. In the synthesis of epoxide resin thermosets, this class of latent NHC allows the production of fast and fully cured materials with high crosslinking content. Fast and complete conversion is found in the anionic ring opening polymerization (AROP) of azepan-2-one (ε-caprolactam, CLA) with and without additional activators.


Subject(s)
Caprolactam , Caprolactam/analogs & derivatives , Epoxy Compounds , Hydantoins , Methane/analogs & derivatives , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...