Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Chem Inf Model ; 64(1): 3-8, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38134123

ABSTRACT

The widespread proliferation of artificial intelligence (AI) and machine learning (ML) methods has a profound effect on the drug discovery process. However, many scientists are reluctant to utilize these powerful tools due to the steep learning curve typically associated with them. AIDDISON offers a convenient, secure, web-based platform for drug discovery, addressing the reluctance of scientists to adopt AI and ML methods due to the steep learning curve. By seamlessly integrating generative models, ADMET property predictions, searches in vast chemical spaces, and molecular docking, AIDDISON provides a sophisticated platform for modern drug discovery. It enables less computer-savvy scientists to utilize these powerful tools in their daily activities, as demonstrated by an example of identifying a valuable set of molecules for lead optimization. With AIDDISON, the benefits of AI/ML in drug discovery are accessible to all.


Subject(s)
Artificial Intelligence , Machine Learning , Molecular Docking Simulation , Drug Discovery , Power, Psychological , Internet
2.
J Med Chem ; 66(13): 8666-8686, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37403966

ABSTRACT

Hypoxia-inducible factors (HIFs) are heterodimeric transcription factors induced in diverse pathophysiological settings. Inhibition of HIF-2α has become a strategy for cancer treatment since the discovery that small molecules, upon binding into a small cavity of the HIF-2α PAS B domain, can alter its conformation and disturb the activity of the HIF dimer complex. Herein, the design, synthesis, and systematic SAR exploration of cycloalkyl[c]thiophenes as novel HIF-2α inhibitors are described, providing the first chemotype featuring an alkoxy-aryl scaffold. X-ray data confirmed the ability of these inhibitors to induce perturbation of key amino acids by appropriately presenting key pharmacophoric elements in the hydrophobic cavity. Selected compounds showed inhibition of VEGF-A secretion in cancer cells and prevention of Arg1 expression and activity in IL4-stimulated macrophages. Moreover, in vivo target gene modulation was demonstrated with compound 35r. Thus, the disclosed HIF-2α inhibitors represent valuable tools for investigating selective HIF-2α inhibition and its effect on tumor biology.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Thiophenes , Humans , Basic Helix-Loop-Helix Transcription Factors/metabolism , Thiophenes/pharmacology , Transcription Factors , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit
3.
J Med Chem ; 66(4): 2386-2395, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36728508

ABSTRACT

The treatment of gastrointestinal stromal tumors (GISTs) driven by activating mutations in the KIT gene is a prime example of targeted therapy for treatment of cancer. The approval of the tyrosine kinase inhibitor imatinib has significantly improved patient survival, but emerging resistance under treatment and relapse is observed. Several additional KIT inhibitors have been approved; still, there is a high unmet need for KIT inhibitors with high selectivity and broad coverage of all clinically relevant KIT mutants. An imidazopyridine hit featuring excellent kinase selectivity was identified in a high-throughput screen (HTS) and optimized to the clinical candidate M4205 (IDRX-42). This molecule has a superior profile compared to approved drugs, suggesting a best-in-class potential for recurrent and metastatic GISTs driven by KIT mutations.


Subject(s)
Antineoplastic Agents , Gastrointestinal Neoplasms , Gastrointestinal Stromal Tumors , Humans , Gastrointestinal Stromal Tumors/drug therapy , Proto-Oncogene Proteins c-kit/genetics , Neoplasm Recurrence, Local/drug therapy , Imatinib Mesylate , Mutation , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Gastrointestinal Neoplasms/drug therapy
4.
J Med Chem ; 64(14): 10371-10392, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34255518

ABSTRACT

Constitutive activation of the canonical Wnt signaling pathway, in most cases driven by inactivation of the tumor suppressor APC, is a hallmark of colorectal cancer. Tankyrases are druggable key regulators in these malignancies and are considered as attractive targets for therapeutic interventions, although no inhibitor has been progressed to clinical development yet. We continued our efforts to develop tankyrase inhibitors targeting the nicotinamide pocket with suitable drug-like properties for investigating effects of Wnt pathway inhibition on tumor growth. Herein, the identification of a screening hit series and its optimization through scaffold hopping and SAR exploration is described. The systematic assessment delivered M2912, a compound with an optimal balance between excellent TNKS potency, exquisite PARP selectivity, and a predicted human PK compatible with once daily oral dosing. Modulation of cellular Wnt pathway activity and significant tumor growth inhibition was demonstrated with this compound in colorectal xenograft models in vivo.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Enzyme Inhibitors/pharmacology , Tankyrases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Female , Humans , Mice , Mice, SCID , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Structure-Activity Relationship , Tankyrases/metabolism
5.
J Chem Inf Model ; 60(11): 5457-5474, 2020 11 23.
Article in English | MEDLINE | ID: mdl-32813975

ABSTRACT

Accurate ranking of compounds with regards to their binding affinity to a protein using computational methods is of great interest to pharmaceutical research. Physics-based free energy calculations are regarded as the most rigorous way to estimate binding affinity. In recent years, many retrospective studies carried out both in academia and industry have demonstrated its potential. Here, we present the results of large-scale prospective application of the FEP+ method in active drug discovery projects in an industry setting at Merck KGaA, Darmstadt, Germany. We compare these prospective data to results obtained on a new diverse, public benchmark of eight pharmaceutically relevant targets. Our results offer insights into the challenges faced when using free energy calculations in real-life drug discovery projects and identify limitations that could be tackled by future method development. The new public data set we provide to the community can support further method development and comparative benchmarking of free energy calculations.


Subject(s)
Drug Discovery , Ligands , Prospective Studies , Retrospective Studies , Thermodynamics
6.
PLoS One ; 15(8): e0235319, 2020.
Article in English | MEDLINE | ID: mdl-32810173

ABSTRACT

Aberrant activation of the Wnt signalling pathway is required for tumour initiation and survival in the majority of colorectal cancers. The development of inhibitors of Wnt signalling has been the focus of multiple drug discovery programs targeting colorectal cancer and other malignancies associated with aberrant pathway activation. However, progression of new clinical entities targeting the Wnt pathway has been slow. One challenge lies with the limited predictive power of 2D cancer cell lines because they fail to fully recapitulate intratumoural phenotypic heterogeneity. In particular, the relationship between 2D cancer cell biology and cancer stem cell function is poorly understood. By contrast, 3D tumour organoids provide a platform in which complex cell-cell interactions can be studied. However, complex 3D models provide a challenging platform for the quantitative analysis of drug responses of therapies that have differential effects on tumour cell subpopulations. Here, we generated tumour organoids from colorectal cancer patients and tested their responses to inhibitors of Tankyrase (TNKSi) which are known to modulate Wnt signalling. Using compounds with 3 orders of magnitude difference in cellular mechanistic potency together with image-based assays, we demonstrate that morphometric analyses can capture subtle alterations in organoid responses to Wnt inhibitors that are consistent with activity against a cancer stem cell subpopulation. Overall our study highlights the value of phenotypic readouts as a quantitative method to asses drug-induced effects in a relevant preclinical model.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Enzyme Inhibitors/pharmacology , Organoids/drug effects , Tankyrases/antagonists & inhibitors , Adult , Animals , Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/pathology , Enzyme Inhibitors/therapeutic use , Female , Humans , Imaging, Three-Dimensional , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/drug effects , Organoids/pathology
7.
J Med Chem ; 62(17): 7897-7909, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31381853

ABSTRACT

Tankyrases 1 and 2 (TNKS1/2) are promising pharmacological targets that recently gained interest for anticancer therapy in Wnt pathway dependent tumors. 2-Aryl-quinazolinones were identified and optimized into potent tankyrase inhibitors through SAR exploration around the quinazolinone core and the 4'-position of the phenyl residue. These efforts were supported by analysis of TNKS X-ray and WaterMap structures and resulted in compound 5k, a potent, selective tankyrase inhibitor with favorable pharmacokinetic properties. The X-ray structure of 5k in complex with TNKS1 was solved and confirmed the design hypothesis. Modulation of Wnt pathway activity was demonstrated with this compound in a colorectal xenograft model in vivo.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Quinazolines/pharmacology , Tankyrases/antagonists & inhibitors , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship , Tankyrases/chemistry , Tankyrases/metabolism
8.
Sci Rep ; 9(1): 201, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30655555

ABSTRACT

Inhibition of the PARP superfamily tankyrase enzymes suppresses Wnt/ß-catenin signalling in tumour cells. Here, we describe here a novel, drug-like small molecule inhibitor of tankyrase MSC2504877 that inhibits the growth of APC mutant colorectal tumour cells. Parallel siRNA and drug sensitivity screens showed that the clinical CDK4/6 inhibitor palbociclib, causes enhanced sensitivity to MSC2504877. This tankyrase inhibitor-CDK4/6 inhibitor combinatorial effect is not limited to palbociclib and MSC2504877 and is elicited with other CDK4/6 inhibitors and toolbox tankyrase inhibitors. The addition of MSC2504877 to palbociclib enhances G1 cell cycle arrest and cellular senescence in tumour cells. MSC2504877 exposure suppresses the upregulation of Cyclin D2 and Cyclin E2 caused by palbociclib and enhances the suppression of phospho-Rb, providing a mechanistic explanation for these effects. The combination of MSC2504877 and palbociclib was also effective in suppressing the cellular hyperproliferative phenotype seen in Apc defective intestinal stem cells in vivo. However, the presence of an oncogenic Kras p.G12D mutation in mice reversed the effects of the MSC2504877/palbociclib combination, suggesting one molecular route that could lead to drug resistance.


Subject(s)
Colorectal Neoplasms/drug therapy , Enzyme Inhibitors/pharmacology , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Tankyrases/antagonists & inhibitors , Animals , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cellular Senescence/drug effects , Colorectal Neoplasms/pathology , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Drug Resistance, Neoplasm , Drug Synergism , Enzyme Inhibitors/therapeutic use , Humans , Mice , Piperazines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyridines/therapeutic use
9.
J Chem Theory Comput ; 14(7): 3859-3869, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29768913

ABSTRACT

Drug-target residence time (τ), one of the main determinants of drug efficacy, remains highly challenging to predict computationally and, therefore, is usually not considered in the early stages of drug design. Here, we present an efficient computational method, τ-random acceleration molecular dynamics (τRAMD), for the ranking of drug candidates by their residence time and obtaining insights into ligand-target dissociation mechanisms. We assessed τRAMD on a data set of 70 diverse drug-like ligands of the N-terminal domain of HSP90α, a pharmaceutically important target with a highly flexible binding site, obtaining computed relative residence times with an accuracy of about 2.3τ for 78% of the compounds and less than 2.0τ within congeneric series. Analysis of dissociation trajectories reveals features that affect ligand unbinding rates, including transient polar interactions and steric hindrance. These results suggest that τRAMD will be widely applicable as a computationally efficient aid to improving drug residence times during lead optimization.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Binding Sites , Drug Discovery , HSP90 Heat-Shock Proteins/chemistry , Humans , Kinetics , Ligands , Molecular Dynamics Simulation , Protein Binding , Protein Domains
10.
J Med Chem ; 61(10): 4397-4411, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29701469

ABSTRACT

Residence time and more recently the association rate constant kon are increasingly acknowledged as important parameters for in vivo efficacy and safety of drugs. However, their broader consideration in drug development is limited by a lack of knowledge of how to optimize these parameters. In this study on a set of 176 heat shock protein 90 inhibitors, structure-kinetic relationships, X-ray crystallography, and molecular dynamics simulations were combined to retrieve a concrete scheme of how to rationally slow down on-rates. We discovered that an increased ligand desolvation barrier by introducing polar substituents resulted in a significant kon decrease. The slowdown was accomplished by introducing polar moieties to those parts of the ligand that point toward a hydrophobic cavity. We validated this scheme by increasing polarity of three Hsp90 inhibitors and observed a 9-, 13-, and 45-fold slowdown of on-rates and a 9-fold prolongation in residence time. This prolongation was driven by transition state destabilization rather than ground state stabilization.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Drug Resistance, Neoplasm , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Molecular Dynamics Simulation , Binding Sites , Crystallography, X-Ray , HSP90 Heat-Shock Proteins/metabolism , Humans , Ligands , Models, Molecular , Molecular Structure , Protein Binding , Protein Conformation
11.
Bioorg Med Chem Lett ; 27(3): 551-556, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27998678

ABSTRACT

The natural product fumagillin 1 and derivatives like TNP-470 2 or beloranib 3 bind to methionine aminopeptidase 2 (MetAP-2) irreversibly. This enzyme is critical for protein maturation and plays a key role in angiogenesis. In this paper we describe the synthesis, MetAP-2 binding affinity and structural analysis of reversible MetAP-2 inhibitors. Optimization of enzymatic activity of screening hit 10 (IC50: 1µM) led to the most potent compound 27 (IC50: 0.038µM), with a concomitant improvement in LLE from 2.1 to 4.2. Structural analysis of these MetAP-2 inhibitors revealed an unprecedented conformation of the His339 side-chain imidazole ring being co-planar sandwiched between the imidazole of His331 and the aryl-ether moiety, which is bound to the purine scaffold. Systematic alteration and reduction of H-bonding capability of this metal binding moiety induced an unexpected 180° flip for the triazolo[1,5-a]pyrimdine bicyclic template.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Glycoproteins/antagonists & inhibitors , Purines/pharmacology , Pyrimidines/pharmacology , Aminopeptidases/metabolism , Dose-Response Relationship, Drug , Glycoproteins/metabolism , Humans , Methionyl Aminopeptidases , Models, Molecular , Molecular Structure , Purines/chemical synthesis , Purines/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 26(13): 3073-3080, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27217002

ABSTRACT

A combined screening strategy using HTS together with focused kinase library and virtual screening led to the identification of diverse chemical series as PDK1 inhibitors. We focused our medicinal chemistry efforts on 7-azaindoles with low micromolar IC50s (e.g., 16: IC50=1.1µM) in the biochemical PDK1 assay. Our structure-guided optimization efforts considered also PDK1 X-ray structures with weaker binding fragments and resulted in 7-azaindoles with significantly improved biochemical PDK1 potency in the two-digit nanomolar range. However, the most potent analogues only showed moderate activities in a cellular mechanistic assay (42: IC50=2.3µM) together with either low microsomal stability or low permeability. The described structure-activity relationship together with PDK1 X-ray structures and early ADME data provided the basis for our subsequent hit-to-lead program.


Subject(s)
Drug Discovery , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Structure-Activity Relationship
13.
J Pharm Sci ; 103(5): 1504-14, 2014 May.
Article in English | MEDLINE | ID: mdl-24648352

ABSTRACT

Common strategies to optimize prodrugs use either in vitro or rodent in vivo approaches, which do not consider elimination pathways that do not result in the generation of the desired product or might be misleading because of species differences, respectively. As a step forward, we have incorporated a novel application of hepatocytes into our prodrug optimization strategy to increase the bioavailability of a poorly soluble drug candidate by attaching a charged ester linker. The model involves the incubation of hepatocytes from multiple species in serum-containing medium to mimic formation as well as simultaneous metabolism of both prodrug and active drug. Using this strategy, a correlation between the in vitro AUC and the AUC after intravenous administration was obtained for active drug formation in several species. Moreover, hepatocytes correctly predicted the likelihood of undesired exposure with nonhydrolyzed prodrug. This novel approach enabled us to identify several prodrugs, which showed improved exposure over a wide dose range. Furthermore, a strategy was developed resulting in a decision tree that can be used to determine the applicability of the hepatocyte model in the screening process.


Subject(s)
Hepatocytes/metabolism , Prodrugs/administration & dosage , Prodrugs/metabolism , Serum/metabolism , Animals , Area Under Curve , Biological Availability , Dogs , Esters/chemistry , Female , Humans , Kinetics , Macaca fascicularis , Male , Mice , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Prodrugs/chemistry , Rats , Rats, Wistar , Solubility
14.
Bioorg Med Chem Lett ; 22(13): 4396-403, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22632933

ABSTRACT

Inhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential molecular therapeutic agents for the treatment of cancer. Here we describe the identification of novel small molecular weight inhibitors of Hsp90 using a fragment based approach. Fragments were selected by docking, tested in a biochemical assay and the confirmed hits were crystallized. Information gained from X-ray structures of these fragments and other chemotypes was used to drive the fragment evolution process. Optimization of these high µM binders resulted in 3-benzylindazole derivatives with significantly improved affinity and anti-proliferative effects in different human cancer cell lines.


Subject(s)
Amides/chemistry , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Indazoles/chemistry , Small Molecule Libraries/chemistry , Amides/toxicity , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Computer Simulation , Crystallography, X-Ray , Drug Evaluation, Preclinical , HSP90 Heat-Shock Proteins/metabolism , Humans , Protein Structure, Tertiary , Small Molecule Libraries/toxicity , Structure-Activity Relationship
15.
Bioorg Med Chem Lett ; 21(8): 2264-9, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21420298

ABSTRACT

RAF kinase plays a critical role in the RAF-MEK-ERK signaling pathway and inhibitors of RAF could be of use for the treatment of various cancer types. We have designed potent RAF-1 inhibitors bearing novel bicyclic heterocycles as key structural elements for the interaction with the hinge region. In both series exploration of the SAR was focussed on the substitution of the phenyl ring, which binds to the induced fit pocket. Overall, it was confirmed that incorporation of lipophilic substituents was needed for potent Raf inhibition and a number of potent analogues were obtained.


Subject(s)
Benzimidazoles/chemistry , Isoquinolines/chemistry , Protein Kinase Inhibitors/chemical synthesis , raf Kinases/antagonists & inhibitors , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Binding Sites , Catalytic Domain , Computer Simulation , Drug Design , Isoquinolines/chemical synthesis , Isoquinolines/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Structure-Activity Relationship , raf Kinases/metabolism
16.
Comb Chem High Throughput Screen ; 14(2): 104-8, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21118081

ABSTRACT

A straightforward and effective procedure for the solution phase preparation of a 2-aminothiazole combinatorial library is described. Reaction, work-up and isolation of the title compounds as free bases was accomplished in a fully automated fashion using the Chemspeed ASW 2000 automated synthesizer. The compounds were obtained in good yields and excellent purities without any further purification procedure.


Subject(s)
Combinatorial Chemistry Techniques/methods , Small Molecule Libraries/chemical synthesis , Thiazoles/chemical synthesis , Combinatorial Chemistry Techniques/economics , Small Molecule Libraries/chemistry , Thiazoles/chemistry
17.
Bioorg Med Chem Lett ; 20(5): 1491-5, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20149654

ABSTRACT

Here we describe the discovery and optimization of hexahydro-2H-pyrano[3,2-c]quinolines (HHPQs) as potent and selective inhibitors of the mitotic kinesin-5 originally found during a high-throughput screening (HTS) campaign sampling our in-house compound collection. The compounds optimized subsequently and characterized herein were potently inhibiting the ATPase activity of Kinesin-5 and also exhibited consistent cellular activity, in that cells arrested in mitosis and apoptosis induction could be observed. X-ray crystallographic data demonstrated that these inhibitors bind in an allosteric pocket of Kinesin-5 distant from the nucleotide and microtubule binding sites. The selected clinical candidate EMD 534085 caused strong growth inhibition in human tumor xenograft models using Colo 205 colon carcinoma cells at doses below 30mg/kg administered twice weekly without showing severe toxicity as determined by loss of body weight.


Subject(s)
Antineoplastic Agents/chemistry , Enzyme Inhibitors/chemistry , Kinesins/antagonists & inhibitors , Mitosis , Quinolines/chemistry , Allosteric Regulation , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Humans , Kinesins/metabolism , Mice , Quinolines/chemical synthesis , Quinolines/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
18.
J Med Chem ; 49(3): 864-71, 2006 Feb 09.
Article in English | MEDLINE | ID: mdl-16451052

ABSTRACT

The standard glycine site antagonist of the N-methyl-D-aspartate (NMDA) receptor, 3-phenyl-4-hydroxyquinolin-2(1H)-one (21), was used as a template for bioisostere benzene/thiophene exchange. Phenylacetylation of aminothiophene carboxylic acid methyl esters and subsequent cyclization delivered the three possible thienopyridinone isomers. 4-Hydroxy-5-phenylthieno[2,3-b]pyridin-6(7H)-one (3a), with the shortest distance between the sulfur and the nitrogen atom, was the most potent isomer (K(i) against the binding of [(3)H]glycine to rat membranes 16 microM), comparable in potency to the model quinolinone (21, 12 microM). Replacement of the phenyl substituent of 21 by a 2-thienyl residue resulted in a 2-5-fold loss in potency and was abandoned. In the thieno part of the thienopyridinone nucleus, the most successful substituents were halogen (Cl or Br) close to the sulfur atom and short alkyl chains at the other position, resulting in 7h, 8h, 8i, and 8m, with K(i) values between 5.8 and 10.5 nM. Introduction of a 3'-phenoxy moiety yielded several compounds with still higher potencies (18h, 18i, 18l, and 18m; K(i) between 1.1 and 2.0 nM). Quantitative structure-activity relationship (QSAR) calculations resulted in a consistent interpretation of the potencies of most compounds. Several of these 3'-phenoxy derivatives protected mouse fibroblast cell lines with transfected NMDA receptors from glutamate-induced toxicity. In addition, we report in vivo results for four of these compounds.


Subject(s)
Cytoprotection , Glycine/metabolism , Pyridones/chemical synthesis , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Thiophenes/chemistry , Animals , Binding, Competitive , Blood-Brain Barrier/metabolism , Cell Line , Electroshock , Glycine/toxicity , Humans , In Vitro Techniques , Male , Mice , Protein Subunits/antagonists & inhibitors , Protein Subunits/genetics , Protein Subunits/metabolism , Pyridones/chemistry , Pyridones/pharmacology , Quantitative Structure-Activity Relationship , Radioligand Assay , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Seizures/etiology , Seizures/prevention & control , Transfection
19.
J Comb Chem ; 5(6): 789-93, 2003.
Article in English | MEDLINE | ID: mdl-14606806

ABSTRACT

The first solid-phase synthesis of oxazolidinones by cycloaddition of resin-bound epoxides with isocyanates is described. Synthesis of the title compounds was achieved by alkylation of resin-bound carbamates with glycidyl tosylate, followed by cycloaddition of the resulting epoxides with isocyanates at elevated temperature in high yields and purity. Because N-aryloxazolidinones have been known to possess various biological activities, this method is useful from the viewpoint of drug discovery.


Subject(s)
Epoxy Compounds/chemical synthesis , Isocyanates/chemical synthesis , Oxazolidinones/chemical synthesis , Technology, Pharmaceutical/methods , Epoxy Compounds/chemistry , Isocyanates/chemistry , Oxazolidinones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...