Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 10(12)2021 11 27.
Article in English | MEDLINE | ID: mdl-34943843

ABSTRACT

Zika virus (ZIKV) became a global health concern in 2016 due to its links to congenital microcephaly and other birth defects. Flaviviruses, including ZIKV, reorganize the endoplasmic reticulum (ER) to form a viroplasm, a compartment where virus particles are assembled. Microtubules (MTs) and microtubule-organizing centers (MTOCs) coordinate structural and trafficking functions in the cell, and MTs also support replication of flaviviruses. Here we investigated the roles of MTs and the cell's MTOCs on ZIKV viroplasm organization and virus production. We show that a toroidal-shaped viroplasm forms upon ZIKV infection, and MTs are organized at the viroplasm core and surrounding the viroplasm. We show that MTs are necessary for viroplasm organization and impact infectious virus production. In addition, the centrosome and the Golgi MTOC are closely associated with the viroplasm, and the centrosome coordinates the organization of the ZIKV viroplasm toroidal structure. Surprisingly, viroplasm formation and virus production are not significantly impaired when infected cells have no centrosomes and impaired Golgi MTOC, and we show that MTs are anchored to the viroplasm surface in these cells. We propose that the viroplasm is a site of MT organization, and the MTs organized at the viroplasm are sufficient for efficient virus production.


Subject(s)
Microtubule-Organizing Center/metabolism , Microtubules/metabolism , Viral Replication Compartments/physiology , Zika Virus Infection/virology , Cell Line , Centrosome/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Humans , Virion/metabolism
2.
Nat Cell Biol ; 22(3): 297-309, 2020 03.
Article in English | MEDLINE | ID: mdl-32066907

ABSTRACT

Non-centrosomal microtubule-organizing centres (ncMTOCs) have a variety of roles that are presumed to serve the diverse functions of the range of cell types in which they are found. ncMTOCs are diverse in their composition, subcellular localization and function. Here we report a perinuclear MTOC in Drosophila fat body cells that is anchored by the Nesprin homologue Msp300 at the cytoplasmic surface of the nucleus. Msp300 recruits the microtubule minus-end protein Patronin, a calmodulin-regulated spectrin-associated protein (CAMSAP) homologue, which functions redundantly with Ninein to further recruit the microtubule polymerase Msps-a member of the XMAP215 family-to assemble non-centrosomal microtubules and does so independently of the widespread microtubule nucleation factor γ-Tubulin. Functionally, the fat body ncMTOC and the radial microtubule arrays that it organizes are essential for nuclear positioning and for secretion of basement membrane components via retrograde dynein-dependent endosomal trafficking that restricts plasma membrane growth. Together, this study identifies a perinuclear ncMTOC with unique architecture that regulates microtubules, serving vital functions.


Subject(s)
Basement Membrane/metabolism , Cell Nucleus , Microtubule-Organizing Center/physiology , Actins/physiology , Animals , Cell Membrane , Cell Nucleus/ultrastructure , Centrosome , Drosophila/metabolism , Drosophila/ultrastructure , Drosophila Proteins/metabolism , Drosophila Proteins/physiology , Dyneins/physiology , Endosomes/metabolism , Fat Body/metabolism , Fat Body/ultrastructure , Membrane Proteins/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/physiology , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/physiology , Microtubule-Organizing Center/ultrastructure , Microtubules/physiology , Muscle Proteins/metabolism , Tubulin/physiology
3.
Evolution ; 73(7): 1428-1442, 2019 07.
Article in English | MEDLINE | ID: mdl-31125112

ABSTRACT

The generation of reproductive incompatibility between groups requires a rare genotype with low compatibility to increase in frequency. We tested the hypothesis that sexual conflict driven by the risk of polyspermy can generate compatibility groups in gamete recognition proteins (GRPs) in the sea urchin Mesocentrotus franciscanus. We examined variation in the sperm (bindin) and egg (EBR1) GRPs, how this variation influences fertilization success and how allele frequencies shift in these GRPs over time. The EBR1 gene is a large, 4595 amino acid protein made up of 27 thrombospondin type 1 domain (TSP) and 20 C1s/C1r, uEGF and bone morphogenic protein subdomain (CUB) repeats. Two TSP and two CUB repeats each demonstrate two common non-synonymous haplotypes (alleles). Sperm bindin and one of these EBR1 repeats (TSP8) shift allele frequencies from one common to two common types over an approximate 200 year interval associated with the removal of predatory sea otters and rising sea urchin abundances; the egg receptor shifts first, followed by the sperm ligand. Laboratory crosses indicate that the historically common sperm and egg gamete recognition proteins have high compatibility as do the new common proteins, with mismatches having lower compatibility. This process of creating compatibility groups sets the stage for reproductive isolation and speciation.


Subject(s)
Genetic Speciation , Germ Cells/physiology , Sperm-Ovum Interactions , Strongylocentrotus/physiology , Animals , Fertilization , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism
4.
Cells ; 7(9)2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30154378

ABSTRACT

The centrosome is the best-understood microtubule-organizing center (MTOC) and is essential in particular cell types and at specific stages during Drosophila development. The centrosome is not required zygotically for mitosis or to achieve full animal development. Nevertheless, centrosomes are essential maternally during cleavage cycles in the early embryo, for male meiotic divisions, for efficient division of epithelial cells in the imaginal wing disc, and for cilium/flagellum assembly in sensory neurons and spermatozoa. Importantly, asymmetric and polarized division of stem cells is regulated by centrosomes and by the asymmetric regulation of their microtubule (MT) assembly activity. More recently, the components and functions of a variety of non-centrosomal microtubule-organizing centers (ncMTOCs) have begun to be elucidated. Throughout Drosophila development, a wide variety of unique ncMTOCs form in epithelial and non-epithelial cell types at an assortment of subcellular locations. Some of these cell types also utilize the centrosomal MTOC, while others rely exclusively on ncMTOCs. The impressive variety of ncMTOCs being discovered provides novel insight into the diverse functions of MTOCs in cells and tissues. This review highlights our current knowledge of the composition, assembly, and functional roles of centrosomal and non-centrosomal MTOCs in Drosophila.

5.
Curr Biol ; 27(13): 1928-1940.e6, 2017 Jul 10.
Article in English | MEDLINE | ID: mdl-28669756

ABSTRACT

Non-centrosomal microtubule organizing centers (MTOCs) direct microtubule (MT) organization to exert diverse cell-type-specific functions. In Drosophila spermatids, the giant mitochondria provide structural platforms for MT reorganization to support elongation of the extremely long sperm. However, the molecular basis for this mitochondrial MTOC and other non-centrosomal MTOCs has not been discerned. Here we report that Drosophila centrosomin (cnn) expresses two major protein variants: the centrosomal form (CnnC) and a non-centrosomal form in testes (CnnT). CnnC is established as essential for functional centrosomes, the major MTOCs in animal cells. We show that CnnT is expressed exclusively in testes by alternative splicing and localizes to giant mitochondria in spermatids. In cell culture, CnnT targets to the mitochondrial surface, recruits the MT nucleator γ-tubulin ring complex (γ-TuRC), and is sufficient to convert mitochondria to MTOCs independent of core pericentriolar proteins that regulate MT assembly at centrosomes. We mapped two separate domains in CnnT: one that is necessary and sufficient to target it to mitochondria and another that is necessary and sufficient to recruit γ-TuRCs and nucleate MTs. In elongating spermatids, CnnT forms speckles on the giant mitochondria that are required to recruit γ-TuRCs to organize MTs and support spermiogenesis. This molecular characterization of the mitochondrial MTOC defines a minimal molecular requirement for MTOC generation and implicates the potent role of Cnn (or its related) proteins in the direct regulation of MT assembly and organization of non-centrosomal MTOCs.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Homeodomain Proteins/genetics , Microtubule-Organizing Center/metabolism , Mitochondria/metabolism , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Homeodomain Proteins/metabolism , Male , Protein Isoforms/genetics , Protein Isoforms/metabolism , Spermatids/metabolism , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...