Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Med Infect Dis ; 5(1)2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32033395

ABSTRACT

The work began with the screening of a library of 700,000 small molecules for inhibitors of Trypanosoma brucei growth (a phenotypic screen). The resulting set of 1035 hit compounds was reviewed by a team of medicinal chemists, leading to the nomination of 17 chemically distinct scaffolds for further investigation. The first triage step was the assessment for brain permeability (looking for brain levels at least 20% of plasma levels) in order to optimize the chances of developing candidates for treating late-stage human African trypanosomiasis. Eleven scaffolds subsequently underwent hit-to-lead optimization using standard medicinal chemistry approaches. Over a period of six years in an academic setting, 1539 analogs to the 11 scaffolds were synthesized. Eight scaffolds were discontinued either due to insufficient improvement in antiparasitic activity (5), poor pharmacokinetic properties (2), or a slow (static) antiparasitic activity (1). Three scaffolds were optimized to the point of curing the acute and/or chronic T. brucei infection model in mice. The progress was accomplished without knowledge of the mechanism of action (MOA) for the compounds, although the MOA has been discovered in the interim for one compound series. Studies on the safety and toxicity of the compounds are planned to help select candidates for potential clinical development. This research demonstrates the power of the phenotypic drug discovery approach for neglected tropical diseases.

2.
ACS Med Chem Lett ; 8(8): 886-891, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28835807

ABSTRACT

A high throughput screening and subsequent hit validation identified compound 1 as an inhibitor of Trypanosoma brucei parasite growth. Extensive structure-activity relationship optimization based on antiparasitic activity led to the highly potent compounds, 1-(4-fluorobenzyl)-3-(4-dimethylamino-3-chlorophenyl)-2-thiohydantoin (68) and 1-(2-chloro-4-fluorobenzyl)-3-(4-dimethylamino-3-methoxyphenyl)-2-thiohydantoin (76), with a T. brucei EC50 of 3 and 2 nM, respectively. This represents >100-fold improvement in potency compared to compound 1. In vivo efficacy experiments of 68 and 76 in an acute mouse model of Human African Trypanosomiasis showed a 100% cure rate after 4 days of oral treatment at 50 mg/kg twice per day.

3.
Bioorg Med Chem ; 25(5): 1571-1584, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28187957

ABSTRACT

A phenotypic screen of a compound library for antiparasitic activity on Trypanosoma brucei, the causative agent of Human African Trypanosomiasis (HAT), led to the identification of N-(2-aminoethyl)-N-phenyl benzamides as a starting point for hit-to-lead medicinal chemistry. Eighty two analogues were prepared, which led to the identification of a set of highly potent N-(2-aminoethyl)-N-benzyloxyphenyl benzamides with the most potent compound 73 having an in vitro EC50=0.001µM. The compounds displayed drug-like properties when tested in a number of in vitro assays. Compound 73 was orally bioavailable and displayed good plasma and brain exposure in mice, cured 2 out of 3 mice infected with Trypanosoma brucei in acute model when dosed orally at 50mg/kg once per day for 4days. Given its potent antiparasitic properties and its ease of synthesis, compound 73 represents a potential lead for the development of drug to treat Human African Trypanosomiasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Benzamides/pharmacology , Trypanosoma brucei brucei/drug effects , Administration, Oral , Animals , Antiprotozoal Agents/pharmacokinetics , Antiprotozoal Agents/therapeutic use , Biological Availability , Drug Discovery , Mice , Structure-Activity Relationship , Trypanosomiasis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...