Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35207863

ABSTRACT

The aim of this study was to improve the machinability of wood-plastic composites by exploring the effects of different wood-plastic composites on machinability. In particular, the effects of milling with cemented carbide cutters were assessed by investigating cutting forces, cutting temperature, surface quality, chip formation, and tool wear. The cutting parameters determined to yield an optimal surface quality were rake angle 2°, cutting speed 9.0 m/s, feed per tooth 0.3 mm, and cutting depth 1.5 mm. In these optimized milling conditions, the wood-plastic composite with polypropylene exhibited the highest cutting forces, cutting temperature, and tool wear, followed by polyethylene and polyvinyl chloride wood-plastic composites. Two wear patterns were determined during wood-plastic composite machining, namely chipping and flaking. Due to the different material composition, semi-discontinuous ribbon chips and continuous ribbon chips were generated from the machining process of wood-plastic composites with polypropylene and polyethylene, respectively. The wood-plastic composite with polyvinyl chloride, on the other hand, formed needle-like chips. These results contribute to a theoretical and practical basis for improved wood-plastic composite machining in industrial settings.

2.
PLoS One ; 13(9): e0203838, 2018.
Article in English | MEDLINE | ID: mdl-30212578

ABSTRACT

A series of experiments were conducted to assess the machinability of high density fiberboard using cemented carbide cutting tools. The objective of this work was to investigate the influence of two cutting parameters, spindle speed and feed per turn, on cutting forces, chip formation and cutting quality. The results are as follows: cutting forces and chip-breaking length decrease with increasing spindle speed and decreasing feed per turn. In contrast, surface roughness increases with decrease of spindle speed and increase in feed per turn. Chips were divided into four categories based on their shape: dust, particle, splinter, and semicontinuous chips. Chip-breaking length had a similar tendency to the variance of cutting forces with respect to average roughness and mean peak-to-valley height: an increase in the variance of cutting forces resulted in increased average roughness and mean peak-to-valley height. Thus, high cutting speed and low feed rate are parameters suitable for high-quality HDF processing and will improve not only machining quality, but production efficiency.


Subject(s)
Construction Materials , Materials Testing , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...