Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 7(1): 142-54, 2009 Jan 07.
Article in English | MEDLINE | ID: mdl-19081957

ABSTRACT

9-Aryl-9-alkoxy-acridanes and their counterparts, 9-aryl-acridinium ions, have been incorporated into the axles both of one- and two-station [2]rotaxanes. The ring component of the rotaxanes consists of the tetracationic ring cyclobis(paraquat-4,4'-bisphenylene). The electron-rich acridanes represent suitable recognition sites for the electron-poor ring because charge transfer interaction plays an important role. The 9-aryl groups at the acridane unit bearing substituents such as the alkoxy and the amino groups influence the strength of the recognition site. Photoexcited acridanes bearing a suitable leaving group such as the methoxy substituent in the 9-position undergo heterolysis, resulting in the formation of the acridinium methoxides. The acridanes are regenerated by the nucleophilic attack of the methoxide ion at the acridinium ion formed. The lifetime of the ionic state is strongly dependent on the solvent composition. Because the positively charged acridinium ions repel the positively charged ring component of the interlocked molecules, a movement of the ring is initiated provided the molecular axle contains an evasive recognition site. Two-station rotaxanes presented here possess as the second station an anisol unit. Both the photoreaction and the thermal back-reaction render the thermodynamic driving force of the interaction of the ring with one of the two recognition stations. Accordingly, movement of the ring forward and back, driven by Brownian motion, occurs. The switching cycle can also be triggered by acid-base titration. The photoexcitation of the acridane unit present in one-station rotaxanes leads to a very unfavourable acridinium recognition station. However, because of the absence of a second station, the ring remains at the unfavourable acridinium station having interaction with 9-aryl group.

2.
Langenbecks Arch Surg ; 393(6): 891-900, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18204855

ABSTRACT

BACKGROUND: Adenocarcinomas of the pancreas are characterized by a rapid progression, an early metastasis, a limited response to chemo- and radiotherapy, and an intense fibrotic reaction known as tumor desmoplasia. Carcinoma cells are surrounded by a dense stroma consisting of myofibroblast-like cells, collagens, and fibronectin. MATERIALS AND METHODS: This review describes the interaction of activated pancreatic stellate cells (myofibroblast-like cells) with tumor cells in pancreas adenocarcinomas. Our data were obtained in cell culture experiments and in in vivo investigations. RESULTS: Carcinoma cells produce soluble mediators and stimulate motility, proliferation, matrix-, and MMP synthesis of stellate cells. Vice versa-activated stellate cells release mitogens, stimulating proliferation of cancer cells. Cancer cell proliferation and resistance to apoptosis might further be induced by the microenvironment (extracellular matrix), which is primarily provided by stellate cells. A very important aspect in the interaction of stellate cells with cancer cells is the expression of EMMPRIN (extracellular matrix metalloproteinase inducer) by cancer cells, the shedding of the extracellular part of EMMPRIN by matrix metalloproteinases (MMPs), and the induction of MMPs in stellate cells by soluble EMMPRIN. In particular, the stellate cells in close proximity to tumor cells therefore express MMPs and degrade connective tissue. CONCLUSION: Through complex interactions between stellate cells and carcinoma cells, tumor progression and cancer cell invasion are accelerated. As we gain better understanding of these mechanisms, adequate therapies to reduce tumor cell invasion and cancer progression might be developed.


Subject(s)
Adenocarcinoma/physiopathology , Cell Transformation, Neoplastic/pathology , Extracellular Matrix/physiology , Pancreas/physiopathology , Pancreatic Neoplasms/physiopathology , Adenocarcinoma/pathology , Animals , Basigin/metabolism , Cell Communication/physiology , Cell Division/physiology , Cell Line, Tumor , Cell Movement/physiology , Collagen/metabolism , Extracellular Matrix/pathology , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Pancreas/pathology , Pancreatic Neoplasms/pathology , Precancerous Conditions/pathology , Precancerous Conditions/physiopathology
3.
Chem Commun (Camb) ; (29): 3094-6, 2007 Aug 07.
Article in English | MEDLINE | ID: mdl-17639153

ABSTRACT

A photoresponsive rotaxane based on the photoheterolysis of an acridane unit which is at the same time a bulky end group has been developed.


Subject(s)
Photochemistry , Rotaxanes/chemistry , Magnetic Resonance Spectroscopy
4.
Chemistry ; 10(14): 3562-8, 2004 Jul 19.
Article in English | MEDLINE | ID: mdl-15252804

ABSTRACT

Novel [2]rotaxanes containing the tetracationic cyclophane cyclobis(paraquat-4,4-biphenylene) and a dumbbell-shaped molecular thread incorporating a photoactive diarylcycloheptatriene station as well as a photoinactive anisol station have been synthesized with yields of nearly 50 % by the alkylative endcapping method. The rotaxane was transformed into the related rotaxane incorporating a diaryl tropylium unit by electrochemical oxidation. The precursor of the cycloheptatrienyl rotaxane, the related pseudorotaxane, and the rotaxanes incorporating the diarylcycloheptatriene and the corresponding tropylium unit were characterized by (1)HNMR spectroscopy and UV/Vis spectroscopy. According to the NMR spectra, both the cycloheptatriene and the tropylium rotaxane possess a folded conformation enabling the tetracationic cyclophane to interact with two stations. The diarylcycloheptatriene station is incorporated inside the cavity of the cyclophane and the anisol station resides alongside the bipyridinium unit of the cyclophane. In contrast, the anisol station is inside the cyclophane in the tropylium rotaxane. The exchange between both conformations can be achieved by introducing the methoxy leaving group into the cycloheptatriene ring; the tropylium rotaxane is generated by photoheterolysis of this methoxy-substituted rotaxane, which reacts thermally back to the cycloheptatriene rotaxane, thus closing the switching cycle. These induced conformational changes achieve a so-called molecular machine.

SELECTION OF CITATIONS
SEARCH DETAIL
...