Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Environ Contam Toxicol ; 49(4): 546-58, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16205993

ABSTRACT

Assessment of risk posed by an environmental contaminant to an aquatic community requires estimation of both its magnitude of occurrence (exposure) and its ability to cause harm (effects). Our ability to estimate effects is often hindered by limited toxicological information. As a result, resource managers and environmental regulators are often faced with the need to extrapolate across taxonomic groups in order to protect the more sensitive members of the aquatic community. The goals of this effort were to 1) compile and organize an extensive body of acute toxicity data, 2) characterize the distribution of toxicant sensitivity across taxa and species, and 3) evaluate the utility of toxicity extrapolation methods based upon sensitivity relations among species and chemicals. Although the analysis encompassed a wide range of toxicants and species, pesticides and freshwater fish and invertebrates were emphasized as a reflection of available data. Although it is obviously desirable to have high-quality acute toxicity values for as many species as possible, the results of this effort allow for better use of available information for predicting the sensitivity of untested species to environmental contaminants. A software program entitled "Ecological Risk Analysis" (ERA) was developed that predicts toxicity values for sensitive members of the aquatic community using species sensitivity distributions. Of several methods evaluated, the ERA program used with minimum data sets comprising acute toxicity values for rainbow trout, bluegill, daphnia, and mysids provided the most satisfactory predictions with the least amount of data. However, if predictions must be made using data for a single species, the most satisfactory results were obtained with extrapolation factors developed for rainbow trout (0.412), bluegill (0.331), or scud (0.041). Although many specific exceptions occur, our results also support the conventional wisdom that invertebrates are generally more sensitive to contaminants than fish are.


Subject(s)
Fishes/physiology , Invertebrates/physiology , Toxicity Tests/statistics & numerical data , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Animals , Cholinesterase Inhibitors/toxicity , Databases, Factual , Lethal Dose 50 , Risk Assessment , Software , Species Specificity
2.
Chemosphere ; 59(4): 545-51, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15788177

ABSTRACT

The fate and toxicity of a polyethoxylated tallowamine (POEA) surfactant system, MON 0818, was evaluated in water-sediment microcosms during a 4-d laboratory study. A surfactant solution of 8 mg l(-1) nominal concentration was added to each of nine 72-l aquaria with or without a 3-cm layer of one of two natural sediments (total organic carbon (TOC) 1.5% or 3.0%). Control well water was added to each of nine additional 72-l aquaria with or without sediment. Water samples were collected from the microcosms after 2, 6, 24, 48, 72, and 96 h of aging to conduct 48-h toxicity tests with Daphnia magna and to determine surfactant concentrations. Elevated mortality of D. magna (43-83%) was observed in overlying water sampled from water-only microcosms throughout the 96-h aging period, whereas elevated mortality (23-97%) was only observed in overlying water sampled from water-sediment microcosms during the first 24h of aging. Measured concentrations of MON 0818 in water-only microcosms remained relatively constant (4-6 mg l(-1)) during the 96-h period, whereas the concentrations in overlying water from microcosms containing either of the two types of sediment dissipated rapidly, with half-lives of 13 h in the 3.0% TOC sediment and 18 h in the 1.5% TOC sediment. Both toxicity and the concentration of MON 0818 in overlying water decreased more rapidly in microcosms containing sediment with the higher percent TOC and clay and with a higher microbial biomass. Mortality of D. magna was significantly correlated with surfactant concentrations in the overlying water. These results indicate that the toxicity of the POEA surfactant in water rapidly declines in the presence of sediment due to a reduction in the surfactant concentration in the overlying water above the sediment.


Subject(s)
Daphnia/drug effects , Fats/toxicity , Fresh Water/analysis , Geologic Sediments/chemistry , Polyethylene Glycols/toxicity , Surface-Active Agents/toxicity , Water Pollutants, Chemical/toxicity , Animals , Daphnia/growth & development , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...